Потребител:Fadams/Ню Олдерон

Пример за супрамолекулен ансамбъл, представен от Жан-Мари Лен
Супрамолекулярен комплекс на хлоридния йон, кукурбит[5]урил и кукурбит[10]урил.
Пример за механически укреплен молекулярен ансамбъл ротаксан.
Съединение от типа гост-домакин p-ксилиламоний, свързано с кукурбитурил.
Интермолекулярен ансамбъл на самопроизволна сбирка фолдамер на Жан-Мари Лен

Супрамолекулярная (надмолекулярная) химия (Supramolecular chemistry) — междисциплинарная область науки, включающая химические, физические и биологические аспекты рассмотрения более сложных, чем молекулы, химических систем, связанных в единое целое посредством межмолекулярных (нековалентных) взаимодействий. Объекты супрамолекулярной химии — супрамолекулярные ансамбли, строящиеся самопроизвольно из комплементарных, то есть имеющих геометрическое и химическое соответствие фрагментов, подобно самопроизвольной сборке сложнейших пространственных структур в живой клетке. Одной из фундаментальных проблем современной химии является направленное конструирование таких систем, создание из молекулярных «строительных блоков» высокоупорядоченных супрамолекулярных соединений с заданной структурой и свойствами.Супрамолекулярные образования характеризуются пространственным расположением своих компонентов, их архитектурой, «супраструктурой», а также типами межмолекулярных взаимодействий, удерживающих компоненты вместе. В целом межмолекулярные взаимодействия слабее, чем ковалентные связи, так что супрамолекулярные ассоциаты менее стабильны термодинамически, более лабильны кинетически и более гибки динамически, чем молекулы.

Согласно терминологии супрамолекулярной химии, компоненты супрамолекулярных ассоциатов принято называть рецептор (ρ) и субстрат (σ), где субстрат — меньший по размеру компонент, вступающий в связь. Термины соединение включения, клатрат и соединение (комплекс) типа гость—хозяин характеризуют соединения, существующие в твёрдом состоянии и относящиеся к твёрдым супрамолекулярным ансамблям.

Селективное связывание определённого субстрата σ и его рецептора ρ с образованием супермолекулы σρ происходит в результате процесса молекулярного распознавания. Если помимо центров связывания рецептор содержит реакционноспособные функциональные группы, он может влиять на химические превращения на связанном с ним субстрате, выступая в качестве супрамолекулярного катализатора. Липофильный, растворимый в мембранах рецептор может выступать в роли носителя, осуществляя транспорт, перенос связанного субстрата. Таким образом, молекулярное распознавание, превращение, перенос — это основные функции супрамолекулярных объектов.

Супрамолекулярную химию можно разделить на две широкие, частично перекрывающиеся области, в которых рассматриваются соответственно: 1) супермолекулы — хорошо определённые, дискретные олигомолекулярные образования, возникающие за счёт межмолекулярной ассоциации нескольких компонентов (рецептора и субстрата(ов)) в соответствии с некоторой «программой», работающей на основе принципов молекулярного распознавания; 2) супрамолекулярные ансамбли — полимолекулярные ассоциаты, возникающие в результате спонтанной ассоциации неопределённо большого числа компонентов в специфическую фазу, характеризуемую более или менее определённой организацией на микроскопическом уровне и макроскопическими свойствами, зависящими от природы фазы (плёнка, слой, мембрана, везикула, мезоморфная фаза, кристалл и т. д.).

Для описания расположения субстрата(ов) относительно рецептора используется специальный формализм. Внешние комплексы-аддукты могут быть обозначены как [A,B], или [A//B]. Для обозначения комплексов включения σ в ρ и частичного пересечения σ и ρ используются математические символы включения ⊂ и пересечения ∩ — [A⊂B] и [A∩B], соответственно. В современной химической литературе наряду с символом ∩ так же часто используется альтернативный символ @.

Впервые термин «супрамолекулярная химия» был введен в 1978 г. лауреатом Нобелевской премии Жаном-Мари Леном и определен как «химия, описывающая сложные образования, которые являются результатом ассоциации двух (или более) химических частиц, связанных вместе межмолекулярными силами». Последующие годы были отмечены взрывообразным развитием этой молодой междисциплинарной науки.

Основные классы соединений

  • Рецепторы:
    • Кавитанди
    • Криптанди
    • Каликсарени
  • Супермолекулы:
    • Комплексы типа гость-хозяин
    • Ротаксани
    • Катенани
  • Ансамбли:
  • Твёрдые соединения включения:
    • Клатраты
    • Интеркалаты

Литература

См. также

Ссылки

Шаблон:Портал химияШаблон:Разделы химии


Структура на ротаксана

Ротаксаны — класс соединений, состоящих из молекулы гантелевидной формы и циклической молекулы, «надетой» на неё. Впервые ротаксан синтезировали в 1967 году (И. Харрисон и С. Харрисон. США), однако это была лишь гипотеза, опиравшаяся на вероятностные данные о том, как будут вести себя две половины гантелевидной молекулы в присутствии макроцикла. Компоненты ротаксанов (линейная и циклическая молекулы) связаны чисто механически без участия химической связи. Этот способ соединения молекул называется топологической связью. К химическим соединениям с такой связью относятся также катенаны (лат. catena — цепь), в которых циклические макромолекулы соединены подобно звеньям цепи.

Синтез

Схема синтеза ротаксанов

Закупорочный метод

Синтез ротаксанов может осуществляться с помощью «закупоривания» гантелевидной молекулы с продетым циклом.

Циклизация

Этод метод заключается в циклизации молекулы-кольца вокруг основной молекулы.

Продевание

Метод использует кинетическую устойчивость ротаксана. При повышенной температуре макроцикл может пройти через ограничительные части гантелевидной молекулы и оставаться там после понижения температуры.

Применения

Ротаксаны имеют интерес у исследователей как объекты для хранения информации. Также они могут использоваться, как молекулярные машины (вращение вокруг главной оси или переход от одного края молекулы к другому).

Ротаксаны в Большой советской энциклопедии

Шаблон:Orgchem-stubШаблон:Rq


Кукурбит[6]урил

Кукурбитурил — тривиальное название органического макроциклического кавитанда состава (C6H6N4O2)6, построенного из шести гликольурильных фрагментов, соединенных через метиленовые мостики. Кукурбитурил был впервые получен в 1905 г. путём конденсации в кислой среде формальдегида и гликольурила (продукта конденсации мочевины и глиоксаля). Однако методы того времени не позволили правильно определить его состав и структуру. Впервые кристаллическая структура этого соединения была определена только в 1981 г. По данным РСА, кукурбитурил представляет собой макроциклический кавитанд, имеющий форму полого бочонка, в плоскости дна и крышки которого находятся атомы кислорода карбонильных групп (порталы). Своё тривиальное название — кукурбитурил (cucurbituril) — этот кавитанд получил в связи с внешним сходством формы молекулы с тыквой (лат. cucurbitus).

Схема синтеза кукурбит[6]урила

Систематическое название по номенклатуре Chemical Abstract: додекагидро – 1Н, 4Н, 14Н, 17Н – 2, 16: 3, 15 – диметано – 5Н, 6Н, 7Н, 8Н, 9Н, 10Н, 11Н, 12Н, 13Н, 18Н, 19Н, 20Н, 21Н, 22Н, 23Н, 24Н, 25Н, 26Н – 2, 3, 4а, 5а, 6а, 7а, 8а, 9а, 10а, 11а, 12а, 13а, 15, 16, 17а, 18а, 19а, 20а, 21а, 22а, 23а, 24а, 25а, 26а – тетракосаазабис – пенталено [1''', 6''' : 5'', 6'', 7''] циклоокта – окта (1, 2, 3 – c d : 5, 6, 7 – c' d') дипенталено – 1, 4, 6, 8, 10, 12, 14, 17, 19, 21, 23, 25 – додекан.

Кукурбитурил — бесцветное кристаллическое вещество, труднорастворимое в воде или органических растворителях, но хорошо растворимое в некоторых минеральных (HCl, H2SO4, CF3SO3H) и карбоновых кислотах (например, HCOOH), в водных растворах солей многих металлов. Уникальное строение, простота в получении, термическая устойчивость (не разлагается при нагревании до 400 °C) делают его удобным для синтеза разнообразных супрамолекулярных соединений. В настоящее время кукурбитурил легко доступен и, в частности, включен в каталог фирмы «Merck».

Размеры внутренней полости молекулы кукурбитурила (высота ~6 Å, внутренний диаметр ~5,5 Å) позволяют включать небольшие органические молекулы или ионы (образуя комплексы гость—хозяин), а образованные карбонильными группами порталы (диаметры порталов составляют ~4 Å) способны связывать катионы металлов. Определение строения кукурбитурила дало импульс широкому исследованию этого соединения как макроциклического кавитанда. Сходный по размерам полости с α-циклодекстрином и 18-краун-6 эфиром, кукурбитурил имеет более высокий отрицательный заряд на донорных атомах кислорода, что повышает стабильность его аддуктов с положительно заряженными ионами. Ещё одним отличием кукурбитурила от других кавитандов, например, каликсаренов, является его структурная «жёсткость» — он практически не изменяет свою форму при включении различных молекул-гостей и, следовательно, проявляет более высокую селективность при образовании соединений включения. Образование таких соединений включения доказано кристаллографически, а также различными физико-химическими методами — абсорбционные, флуоресцентные и ЯМР-спектры молекул-гостей изменяются при переходе его из окружения растворителя (как правило, слабо кислые водные растворы) в гидрофобную полость кукурбитурила. Кукурбитурил образует стабильные соединения включения с аминами и диаминами, алкил- и бензиламмониевыми ионами, молекулами красителей.

Гомологи, номенклатура

Комплекс включения кукурбит[5]урила в кукурбит[10]урил

Кукурбитурил является родоначальником нового класса макроциклических кавитандов с жёсткосткой молекулярной структурой — кукурбитурилов. Представители этого класса отличаются от родоначальника размером макроцикла (числом гликольурильных фрагментов) и заместителями в экваториальном кольце молекулы. На сегодняшний день известны кукурбитурилы с числом гликольурильных фрагментов от 5 до 10. Поскольку систематическое название кукурбитурилов очень громоздо, для обозначения этих соединений разработали специальную номенклатуру, сходную с той, что примененяется для каликсаренов: количество гликольурильных фрагментов указывается числом в квадратных скобках в середине, а количество и тип заместителей в экваториальной области обозначается приставкой в начале названия. Например, новое номенклатурное название кукурбитурила, построенного из 6 гликольурильных фрагментов, будет кукурбит[6]урил, а название соединения, построенного из 5 гликольурильных фрагментов, в котором атомы водородна экваториальных CH-групп заменены на метильные — декаметилкукурбит[5]урил.

Свойства кукурбит[n]урилов зависят от размера молекулы макроцикла, типа и числа заместителей в экваторильном кольце. С ростом числа гликольурильных фрагментов увеличивается размер внутренней полости, что приводит к возможности образования комплексов гость—хозяин либо с большим числом малых молекул-гостей, либо с гостями большего размера. Варьируя заместители в экваториальном кольце можно добиться повышения растворимости кавитанда в разных средах. Следует отметить, что кукурбит[5]урил и кукурбит[7]урил, имеющие нечетное количество гликольурильных фрагментов, в отличие от остальных гомологов хорошо растворимы в воде.

  • Behrend R., Meyer E., Rusche F. // Justus Liebig’s Ann. Chem. — 1905. — B. 339. — S. 1-137.
  • Freeman W. A., Mock W. L., Shih N.-Y. // J. Am. Chem. Soc. — 1981. — V. 103. — P. 7367-7368.
  • Mock W. L. // Comprehens. Supramol. Chem. / Ed.: F. Vögtle — Oxford: Pergamon. — 1996. — V. 2. — P. 477-493.
  • Герасько О. А., Самсоненко Д. Г., Федин В. П. // Успехи химии. — 2002. — Т. 71, № 9. — С. 841-860.
  • Kim K., Kim H.-J. in Encyclopedia of Supramolecular Chemistry (Ed.: L. J. Atwood), Dekker, New York, 2004, P. 390-397.
  • Lagona J., Mukhopadhyay P., Chakrabarti S., Isaacs L. // Angew. Chem. Int. Ed. — 2005. — V. 44. — P. 4844-4870.