Isotopes of erbium

(Redirected from Erbium-166)

Naturally occurring erbium (68Er) is composed of 6 stable isotopes, with 166Er being the most abundant (33.503% natural abundance). 39 radioisotopes have been characterized with between 74 and 112 neutrons, or 142 to 180 nucleons, with the most stable being 169Er with a half-life of 9.4 days, 172Er with a half-life of 49.3 hours, 160Er with a half-life of 28.58 hours, 165Er with a half-life of 10.36 hours, and 171Er with a half-life of 7.516 hours. All of the remaining radioactive isotopes have half-lives that are less than 3.5 hours, and the majority of these have half-lives that are less than 4 minutes. This element also has numerous meta states, with the most stable being 167mEr (t1/2 2.269 seconds).

Isotopes of erbium (68Er)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
160Ersynth28.58 hε160Ho
162Er0.139%stable
164Er1.60%stable
165Ersynth10.36 hε165Ho
166Er33.5%stable
167Er22.9%stable
168Er27.0%stable
169Ersynth9.4 dβ169Tm
170Er14.9%stable
171Ersynth7.516 hβ171Tm
172Ersynth49.3 hβ172Tm
Standard atomic weight Ar°(Er)

The isotopes of erbium range in atomic weight from 141.9723 u (142Er) to 176.9541 u (177Er). The primary decay mode before the most abundant stable isotope, 166Er, is electron capture, and the primary mode after is beta decay. The primary decay products before 166Er are holmium isotopes, and the primary products after are thulium isotopes. All isotopes of erbium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4]Normal proportionRange of variation
142Er6874141.97002(54)#10# μsp141Ho0+
143Er6875142.96655(43)#200# msβ+143Ho9/2−#
β+, p142Dy
144Er6876143.96070(21)#400# ms [>200 ns]β+144Ho0+
145Er6877144.95787(22)#900(200) msβ+145Ho1/2+#
β+, p (rare)144Dy
145mEr205(4)# keV1.0(3) sβ+145Ho(11/2-)
IT (rare)145Er
β+, p (rare)144Dy
146Er6878145.952418(7)1.7(6) sβ+146Ho0+
β+, p (rare)145Dy
147Er6879146.94996(4)#3.2(1.2) sβ+147Ho(1/2+)
β+, p (rare)146Dy
147mEr100(50)# keV1.6(2) sβ+147Ho(11/2−)
β+, p (rare)146Dy
148Er6880147.944735(11)#4.6(2) sβ+ (99.85%)148Ho0+
β+, p (.15%)147Dy
148mEr2.9132(4) MeV13(3) μsIT148Er(10+)
149Er6881148.94231(3)4(2) sβ+ (92.8%)149Ho(1/2+)
β+, p (7.2%)148Dy
149m1Er741.8(2) keV8.9(2) sβ+ (96.5%)149Ho(11/2−)
IT (3.5%)149Er
β+, p (.18%)148Dy
149m2Er2.6111(3) MeV0.61(8) μsIT149Er(19/2+)
149m3Er3.302(7) MeV4.8(1) μsIT149Er(27/2−)
150Er6882149.937916(18)18.5(7) sβ+150Ho0+
150mEr2.7965(5) MeV2.55(10) μsIT150Er10+
151Er6883150.937449(18)23.5(20) sβ+151Ho(7/2−)
151m1Er2.5860(5) MeV580(20) msIT (95.3%)151Er(27/2−)
β+ (4.7%)151Ho
151m2Er10.2866(10) MeV0.42(5) μsIT151Er(65/2-, 61/2+)
152Er6884151.935050(9)10.3(1) sα (90%)148Dy0+
β+ (10%)152Ho
153Er6885152.935086(10)37.1(2) sα (53%)149Dy7/2(−)
β+ (47%)153Ho
153m1Er2.7982(10) MeV373(9) nsIT153Er(27/2-)
153m2Er5.2481(10) MeV248(32) nsIT153Er(41/2-)
154Er6886153.932791(5)3.73(9) minβ+ (99.53%)154Ho0+
α (.47%)150Dy
155Er6887154.933216(7)5.3(3) minβ+ (99.978%)155Ho7/2−
α (.022%)151Dy
156Er6888155.931066(26)19.5(10) minβ+156Ho0+
α (1.2×10−5%)152Dy
157Er6889156.931923(28)18.65(10) minβ+157Ho3/2−
157mEr155.4(3) keV76(6) msIT157Er(9/2+)
158Er6890157.929893(27)2.29(6) hEC158Ho0+
159Er6891158.930691(4)36(1) minβ+159Ho3/2−
159m1Er182.602(24) keV337(14) nsIT159Er9/2+
159m2Er429.05(3) keV590(60) nsIT159Er11/2−
160Er6892159.929077(26)28.58(9) hEC160Ho0+
161Er6893160.930004(9)3.21(3) hβ+161Ho3/2−
161mEr396.44(4) keV7.5(7) μsIT161Er11/2−
162Er6894161. 9287873(8)Observationally Stable[n 8]0+0.00139(5)
162mEr2.02601(13) MeV88(16) nsIT162Er(7-)
163Er6895162.930040(5)75.0(4) minβ+163Ho5/2−
163mEr445.5(6) keV580(100) nsIT163Er(11/2−)
164Er6896163.9292077(8)Observationally Stable[n 9]0+0.01601(3)
165Er6897164.9307335(10)10.36(4) hEC165Ho5/2−
165m1Er551.3(6) keV250(30)nsIT165Er11/2-
165m2Er1.8230(6) MeV370(40)nsIT165Er(19/2)
166Er6898165.9303011(4)Observationally Stable[n 10]0+0.33503(36)
167Er6899166.9320562(3)Observationally Stable[n 11]7/2+0.22869(9)
167mEr207.801(5) keV2.269(6) sIT167Er1/2−
168Er68100167.93237828(28)Observationally Stable[n 12]0+0.26978(18)
168mEr1.0940383(16) MeV109.0(7) nsIT168Er4-
169Er68101168.9345984(3)9.392(18) dβ169Tm1/2−
169m1Er92.05(10) keV285(20) nsIT169Er(5/2-)
169m2Er243.69(17) keV200(10) nsIT169Er7/2+
170Er68102169.9354719(15)Observationally Stable[n 13]0+0.14910(36)
171Er68103170.93803746(15)7.516(2) hβ171Tm5/2−
171mEr198.61(9) keV|210(10) nsIT171Er1/2−
172Er68104171.939363(4)49.3(5) hβ172Tm0+
172mEr1.5009(3) MeV579(62) nsIT172Er(6+)
173Er68105172.94240(21)#1.434(17) minβ173Tm(7/2−)
174Er68106173.94423(32)#3.2(2) minβ174Tm0+
174mEr1.1115(7) MeV3.9(3) sIT174Er8-
175Er68107174.94777(43)#1.2(3) minβ175Tm9/2+#
176Er68108175.94994(43)#12# s (>300 ns)β176Tm0+
177Er68109176.95399(54)#8# s (>300 ns)β177Tm1/2−#
178Er68110177.95678(64)#4# s (>300 ns)β178Tm0+
179Er68111178.96127(54)#3# s (>550 ns)β179Tm3/2−#
β, n178Tm
180Er68112179.96438(54)#2# s (>550 ns)β180Tm0+
β, n179Tm
This table header & footer:

Erbium-169

The radioactive isotope erbium-169 is sometimes used in radiopharmaceuticals.

References