Isotopes of gadolinium

(Redirected from Gadolinium-152)

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.[5]

Isotopes of gadolinium (64Gd)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
148Gdsynth86.9 y[2]α144Sm
150Gdsynth1.79×106 yα146Sm
152Gd0.2%1.08×1014 yα148Sm
153Gdsynth240.6 dε153Eu
154Gd2.18%stable
155Gd14.8%stable
156Gd20.5%stable
157Gd15.7%stable
158Gd24.8%stable
160Gd21.9%stable
Standard atomic weight Ar°(Gd)

Thirty-three radioisotopes have been characterized, with the most stable being alpha-decaying 152Gd (naturally occurring) with a half-life of 1.08×1014 years, and 150Gd with a half-life of 1.79×106 years. All of the remaining radioactive isotopes have half-lives less than 100 years, the majority of these having half-lives less than 24.6 seconds. Gadolinium isotopes have 10 metastable isomers, with the most stable being 143mGd (t1/2 = 110 seconds), 145mGd (t1/2 = 85 seconds) and 141mGd (t1/2 = 24.5 seconds).

The primary decay mode at atomic weights lower than the most abundant stable isotope, 158Gd, is electron capture, and the primary mode at higher atomic weights is beta decay. The primary decay products for isotopes lighter than 158Gd are isotopes of europium and the primary products of heavier isotopes are isotopes of terbium.

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity
[n 9][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5]Normal proportionRange of variation
135Gd6471134.95250(43)#1.1(2) sβ+ (98%)135Eu(5/2+)
β+, p (98%)134Sm
136Gd6472135.94730(32)#1# s [>200 ns]β+?136Eu0+
β+, p?135Sm
137Gd6473136.94502(32)#2.2(2) sβ+137Eu(7/2)+#
β+, p?136Sm
138Gd6474137.94025(22)#4.7(9) sβ+138Eu0+
138mGd2232.6(11) keV6.2(0.2) μsIT138Gd(8−)
139Gd6475138.93813(21)#5.7(3) sβ+139Eu9/2−#
β+, p?138Sm
139mGd250(150)# keV4.8(9) sβ+139Eu1/2+#
β+, p?138Sm
140Gd6476139.933674(30)15.8(4) sβ+ (67(8)%)140Eu0+
EC (33(8)%)
141Gd6477140.932126(21)14(4) sβ+ (99.97%)141Eu(1/2+)
β+, p (0.03%)140Sm
141mGd377.76(9) keV24.5(5) sβ+ (89%)141Eu(11/2−)
IT (11%)141Gd
142Gd6478141.928116(30)70.2(6) sEC (52(5)%)142Eu0+
β+ (48(5)%)
143Gd6479142.92675(22)39(2) sβ+143Eu1/2+
β+, p?142Sm
β+, α?139Pm
143mGd152.6(5) keV110.0(14) sβ+143Eu11/2−
β+, p?142Sm
β+, α?139Pm
144Gd6480143.922963(30)4.47(6) minβ+144Eu0+
144mGd3433.1(5) keV145(30) nsIT144Gd(10+)
145Gd6481144.921710(21)23.0(4) minβ+145Eu1/2+
145mGd749.1(2) keV85(3) sIT (94.3%)145Gd11/2−
β+ (5.7%)145Eu
146Gd6482145.9183185(44)48.27(10) dEC146Eu0+
147Gd6483146.9191010(20)38.06(12) hβ+147Eu7/2−
147mGd8587.8(5) keV510(20) nsIT147Gd49/2+
148Gd6484147.9181214(16)86.9(39) y[2]α[n 10]144Sm0+
149Gd6485148.919341(4)9.28(10) dβ+149Eu7/2−
α (4.34×10−4%)145Sm
150Gd6486149.918659(7)1.79(8)×106 yα[n 11]146Sm0+
151Gd6487150.920348(4)124(1) dEC151Eu7/2−
α (1.1(6)×10−6%)147Sm
152Gd[n 12]6488151.9197910(27)1.08(8)×1014 yα[n 13]148Sm0+0.0020(1)
153Gd6489152.9217495(27)240.4(10) dEC153Eu3/2−
153m1Gd95.1737(12) keV3.5(4) μs(9/2+)
153m2Gd171.189(5) keV76.0(14) μs(11/2−)
154Gd6490153.9208656(27)Observationally Stable[n 14]0+0.0218(3)
155Gd[n 15]6491154.9226220(27)Observationally Stable[n 16]3/2−0.1480(12)
155mGd121.05(19) keV31.97(27) msIT155Gd11/2−
156Gd[n 15]6492155.9221227(27)Stable0+0.2047(9)
156mGd2137.60(5) keV1.3(1) μs7-
157Gd[n 15]6493156.9239601(27)Stable3/2−0.1565(2)
158Gd[n 15]6494157.9241039(27)Stable0+0.2484(7)
159Gd[n 15]6495158.9263887(27)18.479(4) hβ159Tb3/2−
160Gd[n 15]6496159.9270541(27)Observationally Stable[n 17]0+0.2186(19)
161Gd6497160.9296692(29)3.646(3) minβ161Tb5/2−
162Gd6498161.930985(5)8.4(2) minβ162Tb0+
163Gd6499162.93399(32)#68(3) sβ163Tb7/2+#
164Gd64100163.93586(43)#45(3) sβ164Tb0+
165Gd64101164.93938(54)#10.3(16) sβ165Tb1/2−#
166Gd64102165.94160(64)#4.8(10) sβ166Tb0+
167Gd64103166.94557(64)#4.2(3) sβ167Tb5/2−#
168Gd64104167.94836(75)#3.03(16) sβ168Tb0+
169Gd64105168.95287(86)#750(210) msβ169Tb7/2−#
170Gd64106675+94
−75
 ms
[6]
β170Tb0+
171Gd64107392+145
−136
 ms
[6]
β171Tb
172Gd64108163+113
−99
 ms
[6]
β172Tb0+
This table header & footer:

Gadolinium-148

With a half-life of 86.9±3.9 year via alpha decay alone,[2] gadolinium-148 would be ideal for radioisotope thermoelectric generators. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.[7]

Gadolinium-153

Gadolinium-153 has a half-life of 240.4±10 d and emits gamma radiation with strong peaks at 41 keV and 102 keV. It is used as a gamma ray source for X-ray absorptiometry and fluorescence, for bone density gauges for osteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. In nuclear medicine, it serves to calibrate the equipment needed like single-photon emission computed tomography systems (SPECT) to make x-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor from europium or enriched gadolinium.[8] It can also detect the loss of calcium in the hip and back bones, allowing the ability to diagnose osteoporosis.[9]

References