Isotopes of palladium

(Redirected from Palladium-104)

Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than a half an hour except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).

Isotopes of palladium (46Pd)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
100Pdsynth3.63 dε100Rh
γ
102Pd1.02%stable
103Pdsynth16.991 dε103Rh
104Pd11.1%stable
105Pd22.3%stable
106Pd27.3%stable
107Pdtrace6.5×106 yβ107Ag
108Pd26.5%stable
110Pd11.7%stable
Standard atomic weight Ar°(Pd)

The primary decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver.

Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978.[4] The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.[5]

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4]Normal proportionRange of variation
91Pd464590.94911(61)#10# ms [>1.5 μs]β+91Rh7/2+#
92Pd464691.94042(54)#1.1(3) s [0.7(+4−2) s]β+92Rh0+
93Pd464792.93591(43)#1.07(12) sβ+93Rh(9/2+)
93mPd0+X keV9.3(+25−17) s
94Pd464893.92877(43)#9.0(5) sβ+94Rh0+
94mPd4884.4(5) keV530(10) ns(14+)
95Pd464994.92469(43)#10# sβ+95Rh9/2+#
95mPd1860(500)# keV13.3(3) sβ+ (94.1%)95Rh(21/2+)
IT (5%)95Pd
β+, p (.9%)94Ru
96Pd465095.91816(16)122(2) sβ+96Rh0+
96mPd2530.8(1) keV1.81(1) μs8+
97Pd465196.91648(32)3.10(9) minβ+97Rh5/2+#
98Pd465297.912721(23)17.7(3) minβ+98Rh0+
99Pd465398.911768(16)21.4(2) minβ+99Rh(5/2)+
100Pd465499.908506(12)3.63(9) dEC100Rh0+
101Pd4655100.908289(19)8.47(6) hβ+101Rh5/2+
102Pd4656101.905609(3)Observationally Stable[n 8]0+0.0102(1)
103Pd[n 9]4657102.906087(3)16.991(19) dEC103Rh5/2+
103mPd784.79(10) keV25(2) ns11/2−
104Pd4658103.904036(4)Stable0+0.1114(8)
105Pd[n 10]4659104.905085(4)Stable5/2+0.2233(8)
106Pd[n 10]4660105.903486(4)Stable0+0.2733(3)
107Pd[n 11]4661106.905133(4)6.5(3)×106 yβ107Ag5/2+trace[n 12]
107m1Pd115.74(12) keV0.85(10) μs1/2+
107m2Pd214.6(3) keV21.3(5) sIT107Pd11/2−
108Pd[n 10]4662107.903892(4)Stable0+0.2646(9)
109Pd[n 10]4663108.905950(4)13.7012(24) hβ109mAg5/2+
109m1Pd113.400(10) keV380(50) ns1/2+
109m2Pd188.990(10) keV4.696(3) minIT109Pd11/2−
110Pd[n 10]4664109.905153(12)Observationally Stable[n 13]0+0.1172(9)
111Pd4665110.907671(12)23.4(2) minβ111mAg5/2+
111mPd172.18(8) keV5.5(1) hIT111Pd11/2−
β111mAg
112Pd4666111.907314(19)21.03(5) hβ112Ag0+
113Pd4667112.91015(4)93(5) sβ113mAg(5/2+)
113mPd81.1(3) keV0.3(1) sIT113Pd(9/2−)
114Pd4668113.910363(25)2.42(6) minβ114Ag0+
115Pd4669114.91368(7)25(2) sβ115mAg(5/2+)#
115mPd89.18(25) keV50(3) sβ (92%)115Ag(11/2−)#
IT (8%)115Pd
116Pd4670115.91416(6)11.8(4) sβ116Ag0+
117Pd4671116.91784(6)4.3(3) sβ117mAg(5/2+)
117mPd203.2(3) keV19.1(7) msIT117Pd(11/2−)#
118Pd4672117.91898(23)1.9(1) sβ118Ag0+
119Pd4673118.92311(32)#0.92(13) sβ119Ag
120Pd4674119.92469(13)0.5(1) sβ120Ag0+
121Pd4675120.92887(54)#285 msβ121Ag
122Pd4676121.93055(43)#175 ms [>300 ns]β122Ag0+
123Pd4677122.93493(64)#108 msβ123Ag
124Pd4678123.93688(54)#38 msβ124Ag0+
125Pd[6]467957 msβ125Ag
126Pd[7][8]468048.6 msβ126Ag0+
126m1Pd2023 keV330 nsIT126Pd5−
126m2Pd2110 keV440 nsIT126m1Pd7−
127Pd468138 msβ127Ag
128Pd[7][8]468235 msβ128Ag0+
128mPd2151 keV5.8 μsIT128Pd8+
129Pd468331 msβ129Ag
This table header & footer:

Palladium-103

Palladium-103 is a radioisotope of the element palladium that has uses in radiation therapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.99[9] days and decays by electron capture to rhodium-103, emitting characteristic x-rays with 21 keV of energy.

Palladium-107

Nuclidet12YieldQ[a 1]βγ
(Ma)(%)[a 2](keV)
99Tc0.2116.1385294β
126Sn0.2300.10844050[a 3]βγ
79Se0.3270.0447151β
135Cs1.336.9110[a 4]269β
93Zr1.535.457591βγ
107Pd6.5  1.249933β
129I15.7  0.8410194βγ

Palladium-107 is the second-longest lived (half-life of 6.5 million years[9]) and least radioactive (decay energy only 33 keV, specific activity 5×10−5 Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to 107Ag, which is stable.

Its yield from thermal neutron fission of uranium-235 is 0.1629% per fission[citation needed], only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.3%. Fast fission or fission of some heavier actinides[which?] will produce palladium-107 at higher yields.

One source[10] estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).

Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.

References