Isotopes of ruthenium

(Redirected from Ruthenium-100)

Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes (of which two may in the future be found radioactive). Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.

Isotopes of ruthenium (44Ru)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
96Ru5.54%stable
97Rusynth2.9 dε97Tc
γ
98Ru1.87%stable
99Ru12.8%stable
100Ru12.6%stable
101Ru17.1%stable
102Ru31.6%stable
103Rusynth39.26 dβ103Rh
γ
104Ru18.6%stable
106Rusynth373.59 dβ106Rh
Standard atomic weight Ar°(Ru)

Twenty-four other radioisotopes have been characterized with atomic weights ranging from 86.95 u (87Ru) to 119.95 u (120Ru). Most of these have half-lives that are less than five minutes, except 94Ru (half-life: 51.8 minutes), 95Ru (half-life: 1.643 hours), and 105Ru (half-life: 4.44 hours).

The primary decay mode before the most abundant isotope, 102Ru, is electron capture and the primary mode after is beta emission. The primary decay product before 102Ru is technetium and the primary product after is rhodium.

Because of the very high volatility of ruthenium tetroxide (RuO
4
) ruthenium radioactive isotopes with their relative short half-life are considered as the second most hazardous gaseous isotopes after iodine-131 in case of release by a nuclear accident.[4][5][6] The two most important isotopes of ruthenium in case of nuclear accident are these with the longest half-life: 103Ru (39.26 days) and 106Ru (373.59 days).[5]

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4]Normal proportionRange of variation
87Ru444386.94918(64)#50# ms [>1.5 μs]β+87Tc1/2−#
88Ru444487.94026(43)#1.3(3) s [1.2(+3−2) s]β+88Tc0+
89Ru444588.93611(54)#1.38(11) sβ+89Tc(7/2)(+#)
90Ru444689.92989(32)#11.7(9) sβ+90Tc0+
91Ru444790.92629(63)#7.9(4) sβ+91Tc(9/2+)
91mRu80(300)# keV7.6(8) sβ+ (>99.9%)91Tc(1/2−)
IT (<.1%)91Ru
β+, p (<.1%)90Mo
92Ru444891.92012(32)#3.65(5) minβ+92Tc0+
93Ru444992.91705(9)59.7(6) sβ+93Tc(9/2)+
93m1Ru734.40(10) keV10.8(3) sβ+ (78%)93Tc(1/2)−
IT (22%)93Ru
β+, p (.027%)92Mo
93m2Ru2082.6(9) keV2.20(17) μs(21/2)+
94Ru445093.911360(14)51.8(6) minβ+94Tc0+
94mRu2644.55(25) keV71(4) μs(8+)
95Ru445194.910413(13)1.643(14) hβ+95Tc5/2+
96Ru445295.907598(8)Observationally Stable[n 8]0+0.0554(14)
97Ru445396.907555(9)2.791(4) dβ+97mTc5/2+
98Ru445497.905287(7)Stable0+0.0187(3)
99Ru445598.9059393(22)Stable5/2+0.1276(14)
100Ru445699.9042195(22)Stable0+0.1260(7)
101Ru[n 9]4457100.9055821(22)Stable5/2+0.1706(2)
101mRu527.56(10) keV17.5(4) μs11/2−
102Ru[n 9]4458101.9043493(22)Stable0+0.3155(14)
103Ru[n 9]4459102.9063238(22)39.26(2) dβ103Rh3/2+
103mRu238.2(7) keV1.69(7) msIT103Ru11/2−
104Ru[n 9]4460103.905433(3)Observationally Stable[n 10]0+0.1862(27)
105Ru[n 9]4461104.907753(3)4.44(2) hβ105Rh3/2+
106Ru[n 9]4462105.907329(8)373.59(15) dβ106Rh0+
107Ru4463106.90991(13)3.75(5) minβ107Rh(5/2)+
108Ru4464107.91017(12)4.55(5) minβ108Rh0+
109Ru4465108.91320(7)34.5(10) sβ109Rh(5/2+)#
110Ru4466109.91414(6)11.6(6) sβ110Rh0+
111Ru4467110.91770(8)2.12(7) sβ111Rh(5/2+)
112Ru4468111.91897(8)1.75(7) sβ112Rh0+
113Ru4469112.92249(8)0.80(5) sβ113Rh(5/2+)
113mRu130(18) keV510(30) ms(11/2−)
114Ru4470113.92428(25)#0.53(6) sβ (>99.9%)114Rh0+
β, n (<.1%)113Rh
115Ru4471114.92869(14)740(80) msβ (>99.9%)115Rh
β, n (<.1%)114Rh
116Ru4472115.93081(75)#400# ms [>300 ns]β116Rh0+
117Ru4473116.93558(75)#300# ms [>300 ns]β117Rh
118Ru4474117.93782(86)#200# ms [>300 ns]β118Rh0+
119Ru4475118.94284(75)#170# ms [>300 ns]
120Ru4476119.94531(86)#80# ms [>300 ns]0+
This table header & footer:
  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.[citation needed]
  • In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source is to be found either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It is estimated that over distances of the order of a few tens of kilometres around the location of the release levels may exceed the limits for non-dairy foodstuffs.[7]
Ruthenium-96

References