Isotopes of samarium

(Redirected from Samarium-150)

Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.06×1011 y) and 148Sm (6.3×1015 y), with 152Sm being the most abundant (26.75% natural abundance). 146Sm is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide.[4][5] A 2012 paper revising the estimated half-life of 146Sm from 10.3(5)×107 y to 6.8(7)×107 y was retracted in 2023.[5][6] It is the longest-lived nuclide that has not yet been confirmed to be primordial.

Isotopes of samarium (62Sm)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
144Sm3.08%stable
145Smsynth340 dε145Pm
146Smtrace1.03×108 yα142Nd
147Sm15%1.07×1011 yα143Nd
148Sm11.3%6.3×1015 yα144Nd
149Sm13.8%stable
150Sm7.37%stable
151Smsynth94.6 yβ151Eu
152Sm26.7%stable
153Smsynth46.28 hβ153Eu
154Sm22.7%stable
Standard atomic weight Ar°(Sm)

Other than the naturally occurring isotopes, the longest-lived radioisotopes are 151Sm, which has a half-life of 94.6 years,[7] and 145Sm, which has a half-life of 340 days. All of the remaining radioisotopes, which range from 129Sm to 168Sm, have half-lives that are less than two days, and the majority of these have half-lives that are less than 48 seconds. This element also has twelve known isomers with the most stable being 141mSm (t1/2 22.6 minutes), 143m1Sm (t1/2 66 seconds) and 139mSm (t1/2 10.7 seconds).

The long lived isotopes, 146Sm, 147Sm, and 148Sm, primarily decay by alpha decay to isotopes of neodymium. Lighter unstable isotopes of samarium primarily decay by electron capture to isotopes of promethium, while heavier ones decay by beta decay to isotopes of europium.

Isotopes of samarium are used in samarium–neodymium dating for determining the age relationships of rocks and meteorites.

151Sm is a medium-lived fission product and acts as a neutron poison in the nuclear fuel cycle. The stable fission product 149Sm is also a neutron poison.

Samarium is theoretically the lightest element with even atomic number with no stable isotopes (all isotopes of it can theoretically go either alpha decay or beta decay or double beta decay), other such elements are those with atomic numbers > 66 (dysprosium, which is the heaviest theoretically stable nuclide).

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity
[n 9][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5]Normal proportionRange of variation
129Sm6267128.95464(54)#550(100) ms5/2+#
130Sm6268129.94892(43)#1# sβ+130Pm0+
131Sm6269130.94611(32)#1.2(2) sβ+131Pm5/2+#
β+, p (rare)130Nd
132Sm6270131.94069(32)#4.0(3) sβ+132Pm0+
β+, p131Nd
133Sm6271132.93867(21)#2.90(17) sβ+133Pm(5/2+)
β+, p132Nd
134Sm6272133.93397(21)#10(1) sβ+134Pm0+
135Sm6273134.93252(17)10.3(5) sβ+ (99.98%)135Pm(7/2+)
β+, p (.02%)134Nd
135mSm0(300)# keV2.4(9) sβ+135Pm(3/2+, 5/2+)
136Sm6274135.928276(13)47(2) sβ+136Pm0+
136mSm2264.7(11) keV15(1) μs(8−)
137Sm6275136.92697(5)45(1) sβ+137Pm(9/2−)
137mSm180(50)# keV20# sβ+137Pm1/2+#
138Sm6276137.923244(13)3.1(2) minβ+138Pm0+
139Sm6277138.922297(12)2.57(10) minβ+139Pm1/2+
139mSm457.40(22) keV10.7(6) sIT (93.7%)139Sm11/2−
β+ (6.3%)139Pm
140Sm6278139.918995(13)14.82(12) minβ+140Pm0+
141Sm6279140.918476(9)10.2(2) minβ+141Pm1/2+
141mSm176.0(3) keV22.6(2) minβ+ (99.69%)141Pm11/2−
IT (.31%)141Sm
142Sm6280141.915198(6)72.49(5) minβ+142Pm0+
143Sm6281142.914628(4)8.75(8) minβ+143Pm3/2+
143m1Sm753.99(16) keV66(2) sIT (99.76%)143Sm11/2−
β+ (.24%)143Pm
143m2Sm2793.8(13) keV30(3) ms23/2(−)
144Sm6282143.911999(3)Observationally stable[n 10]0+0.0307(7)
144mSm2323.60(8) keV880(25) ns6+
145Sm6283144.913410(3)340(3) dEC145Pm7/2−
145mSm8786.2(7) keV990(170) ns
[0.96(+19−15) μs]
(49/2+)
146Sm6284145.913041(4)1.03(5)×108 y[n 11]α142Nd0+Trace
147Sm[n 12][n 13][n 14]6285146.9148979(26)(1.066±0.5)×1011 yα143Nd7/2−0.1499(18)
148Sm[n 12]6286147.9148227(26)(6.3±1.3)×1015 yα144Nd0+0.1124(10)
149Sm[n 13][n 15]6287148.9171847(26)Observationally stable[n 16]7/2−0.1382(7)
150Sm6288149.9172755(26)Observationally stable[n 17]0+0.0738(1)
151Sm[n 13][n 15]6289150.9199324(26)94.6±0.6 yβ151Eu5/2−
151mSm261.13(4) keV1.4(1) μs(11/2)−
152Sm[n 13]6290151.9197324(27)Observationally stable[n 18]0+0.2675(16)
153Sm[n 13]6291152.9220974(27)46.2846±0.0023 hβ153Eu3/2+
153mSm98.37(10) keV10.6(3) msIT153Sm11/2−
154Sm[n 13]6292153.9222093(27)Observationally stable[n 19]0+0.2275(29)
155Sm6293154.9246402(28)22.3(2) minβ155Eu3/2−
156Sm6294155.925528(10)9.4(2) hβ156Eu0+
156mSm1397.55(9) keV185(7) ns5−
157Sm6295156.92836(5)8.03(7) minβ157Eu(3/2−)
158Sm6296157.92999(8)5.30(3) minβ158Eu0+
159Sm6297158.93321(11)11.37(15) sβ159Eu5/2−
160Sm6298159.93514(21)#9.6(3) sβ160Eu0+
161Sm6299160.93883(32)#4.349+0.425
−0.441
 s
[9]
β161Eu7/2+#
162Sm62100161.94122(54)#3.369+0.200
−0.303
 s
[9]
β162Eu0+
163Sm62101162.94536(75)#1.744+0.180
−0.204
 s
[9]
β163Eu1/2−#
164Sm62102163.94828(86)#1.422+0.54
−0.59
 s
[9]
β164Eu0+
165Sm62103164.95298(97)#592+51
−55
 ms
[9]
β (98.64%)165Eu5/2−#
β, n (1.36%)164Eu
166Sm62104396+56
−63
 ms
[9]
β (95.62%)166Eu0+
β, n (4.38%)165Eu
167Sm62105334+83
−78
 ms
[9]
β167Eu
β, n166Eu
168Sm62106353+210
−164
 ms
[9]
β168Eu0+
β, n167Eu
This table header & footer:

Samarium-149

Samarium-149 (149Sm) is an observationally stable isotope of samarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from the fission product 149Nd (yield 1.0888%). 149Sm is a neutron-absorbing nuclear poison with significant effect on nuclear reactor operation, second only to 135Xe. Its neutron cross section is 40140 barns for thermal neutrons.

The equilibrium concentration (and thus the poisoning effect) builds to an equilibrium value in about 500 hours (about 20 days) of reactor operation, and since 149Sm is stable, the concentration remains essentially constant during further reactor operation. This contrasts with xenon-135, which accumulates from the beta decay of iodine-135 (a short lived fission product) and has a high neutron cross section, but itself decays with a half-life of 9.2 hours (so does not remain in constant concentration long after the reactor shutdown), causing the so-called xenon pit.

Samarium-151

Medium-lived
fission products [further explanation needed]
t½
(year)
Yield
(%)
Q
(keV)
βγ
155Eu4.760.0803252βγ
85Kr10.760.2180687βγ
113mCd14.10.0008316β
90Sr28.94.505  2826β
137Cs30.236.337  1176βγ
121mSn43.90.00005390βγ
151Sm88.80.531477β
Yield, % per fission[10]
ThermalFast14 MeV
232Thnot fissile0.399 ± 0.0650.165 ± 0.035
233U0.333 ± 0.0170.312 ± 0.0140.49 ± 0.11
235U0.4204 ± 0.00710.431 ± 0.0150.388 ± 0.061
238Unot fissile0.810 ± 0.0120.800 ± 0.057
239Pu0.776 ± 0.0180.797 ± 0.037?
241Pu0.86 ± 0.240.910 ± 0.025?

Samarium-151 (151Sm) has a half-life of 88.8 years, undergoing low-energy beta decay, and has a fission product yield of 0.4203% for thermal neutrons and 235U, about 39% of 149Sm's yield. The yield is somewhat higher for 239Pu.

Its neutron absorption cross section for thermal neutrons is high at 15200 barns, about 38% of 149Sm's absorption cross section, or about 20 times that of 235U. Since the ratios between the production and absorption rates of 151Sm and 149Sm are almost equal, the two isotopes should reach similar equilibrium concentrations. Since 149Sm reaches equilibrium in about 500 hours (20 days), 151Sm should reach equilibrium in about 50 days.

Since nuclear fuel is used for several years (burnup) in a nuclear power plant, the final amount of 151Sm in the spent nuclear fuel at discharge is only a small fraction of the total 151Sm produced during the use of the fuel. According to one study, the mass fraction of 151Sm in spent fuel is about 0.0025 for heavy loading of MOX fuel and about half that for uranium fuel, which is roughly two orders of magnitude less than the mass fraction of about 0.15 for the medium-lived fission product 137Cs.[11] The decay energy of 151Sm is also about an order of magnitude less than that of 137Cs. The low yield, low survival rate, and low decay energy mean that 151Sm has insignificant nuclear waste impact compared to the two main medium-lived fission products 137Cs and 90Sr.

Samarium-153

Samarium-153 (153Sm) has a half-life of 46.3 hours, undergoing β decay into 153Eu. As a component of samarium lexidronam, it is used in palliation of bone cancer.[12] It is treated by the body in a similar manner to calcium, and it localizes selectively to bone.

References

  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.
🔥 Top keywords: Main PageSpecial:SearchWikipedia:Featured picturesYasukeHarrison ButkerRobert FicoBridgertonCleopatraDeaths in 2024Joyce VincentXXXTentacionHank AdamsIt Ends with UsYouTubeNew Caledonia2024 Indian general electionHeeramandiDarren DutchyshenSlovakiaKingdom of the Planet of the ApesAttempted assassination of Robert FicoLawrence WongBaby ReindeerXXX: Return of Xander CageThelma HoustonFuriosa: A Mad Max SagaMegalopolis (film)Richard GaddKepler's SupernovaWicked (musical)Sunil ChhetriXXX (2002 film)Ashley MadisonAnya Taylor-JoyPlanet of the ApesNava MauYoung SheldonPortal:Current eventsX-Men '97