Isotopes of silver

(Redirected from Silver-109)

Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with all stable istopes having nuclear spins of 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra.[4]

Isotopes of silver (47Ag)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
105Agsynth41.3 dε105Pd
γ
106mAgsynth8.28 dε106Pd
γ
107Ag51.8%stable
108mAgsynth439 yε108Pd
IT108Ag
γ
109Ag48.2%stable
110m2Agsynth249.86 dβ110Cd
γ
111Agsynth7.43 dβ111Cd
γ
Standard atomic weight Ar°(Ag)

40 radioisotopes have been characterized with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.43 days, and 112Ag with a half-life of 3.13 hours.

All of the remaining radioactive isotopes have half-lives that are less than an hour, and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states, with the most stable being 108mAg (half-life 439 years), 110mAg (half-life 249.86 days) and 106mAg (half-life 8.28 days).

Isotopes of silver range in atomic weight from 91.960 u (92Ag) to 132.969 u (133Ag). The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.

The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.

The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus 107Ag correlations observed in bodies, which have clearly been melted since the accretion of the Solar System, must reflect the presence of live short-lived nuclides in the early Solar System.

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4]Normal proportion[1]Range of variation
92Ag474591.95971(43)#1# ms
[>400 ns]
β+92Pd
p91Pd
93Ag474692.95019(43)#228(16) nsβ+93Pd9/2+#
p92Pd
β+, p92Rh
94Ag474793.94374(43)#27(2) msβ+ (>99.8%)94Pd0+#
β+, p (<0.2%)93Rh
94m1Ag1350(400)# keV470(10) msβ+ (83%)94Pd(7+)
β+, p (17%)93Rh
94m2Ag6500(550)# keV400(40) msβ+ (~68.4%)94Pd(21+)
β+, p (~27%)93Rh
p (4.1%)93Pd
2p (0.5%)92Rh
95Ag474894.93569(43)#1.78(6) sβ+ (97.7%)95Pd(9/2+)
β+, p (2.3%)94Rh
95m1Ag344.2(3) keV<0.5 sIT95Ag(1/2−)
95m2Ag2531.3(15) keV<16 msIT95Ag(23/2+)
95m3Ag4860.0(15) keV<40 msIT95Ag(37/2+)
96Ag474995.93074(10)4.45(3) sβ+ (95.8%)96Pd(8+)
β+, p (4.2%)95Rh
96m1Ag0(50)# keV6.9(5) sβ+ (85.1%)96Pd(2+)
β+, p (14.9%)95Rh
96m2Ag2461.4(3) keV103.2(45) μsIT96Ag(13-)
96m3Ag2686.7(4) keV1.561(16) μsIT96Ag(15+)
96m4Ag6951.8(14) keV132(17) nsIT96Ag(19+)
97Ag475096.923881(13)25.5(3) sβ+97Pd(9/2+)
97mAg620(40) keV100# ms(1/2-#)
98Ag475197.92156(4)47.5(3) sβ+ (99.99%)98Pd(6)+
β+, p (.0012%)97Rh
98mAg107.28(10) keV161(7) nsIT98Ag(4+)
99Ag475298.917646(7)2.07(5) minβ+99Pd(9/2)+
99mAg506.2(4) keV10.5(5) sIT99Ag(1/2−)
100Ag475399.916115(5)2.01(9) minβ+100Pd(5)+
100mAg15.52(16) keV2.24(13) minIT100Ag(2)+
β+100Pd
101Ag4754100.912684(5)11.1(3) minβ+101Pd9/2+
101mAg274.1(3) keV3.10(10) sIT101Ag1/2−
102Ag4755101.911705(9)12.9(3) minβ+102Pd5+
102mAg9.40(7) keV7.7(5) minβ+ (51%)102Pd2+
IT (49%)102Ag
103Ag4756102.908961(4)65.7(7) minβ+103Pd7/2+
103mAg134.45(4) keV5.7(3) sIT103Ag1/2−
104Ag4757103.908624(5)69.2(10) minβ+104Pd5+
104mAg6.90(22) keV33.5(20) minβ+ (>99.93%)104Pd2+
IT (<0.07%)104Ag
105Ag4758104.906526(5)41.29(7) dβ+105Pd1/2−
105mAg25.468(16) keV7.23(16) minIT (99.66%)105Ag7/2+
β+ (.34%)105Pd
106Ag4759105.906663(3)23.96(4) minβ+106Pd1+
β (rare)106Cd
106mAg89.66(7) keV8.28(2) dβ+106Pd6+
IT (rare)106Ag
107Ag[n 9]4760106.9050915(26)Stable1/2−0.51839(8)
107mAg93.125(19) keV44.3(2) sIT107Ag7/2+
108Ag4761107.9059502(26)2.382(11) minβ (97.15%)108Cd1+
β+ (2.85%)108Pd
108mAg109.466(7) keV439(9) yβ+ (91.3%)108Pd6+
IT (8.96%)108Ag
109Ag[n 10]4762108.9047558(14)Stable1/2−0.48161(8)
109mAg88.0337(10) keV39.79(21) sIT109Ag7/2+
110Ag4763109.9061107(14)24.56(11) sβ (99.7%)110Cd1+
EC (.3%)110Pd
110m1Ag1.112(16) keV660(40) nsIT110Ag2−
110m2Ag117.59(5) keV249.863(24) dβ (98.67%)110Cd6+
IT (1.33%)110Ag
111Ag[n 10]4764110.9052968(16)7.433(10) dβ111Cd1/2−
111mAg59.82(4) keV64.8(8) sIT (99.3%)111Ag7/2+
β (.7%)111Cd
112Ag4765111.9070485(26)3.130(8) hβ112Cd2(−)
113Ag4766112.906573(18)5.37(5) hβ113mCd1/2−
113mAg43.50(10) keV68.7(16) sIT (64%)113Ag7/2+
β (36%)113Cd
114Ag4767113.908823(5)4.6(1) sβ114Cd1+
114mAg198.9(10) keV1.50(5) msIT114Ag(6+)
115Ag4768114.908767(20)20.0(5) minβ115mCd1/2−
115mAg41.16(10) keV18.0(7) sβ (79%)115Cd7/2+
IT (21%)115Ag
116Ag4769115.911387(4)3.83(8) minβ116Cd(0-)
116m1Ag47.90(10) keV20(1) sβ (93%)116Cd(3+)
IT (7%)116Ag
116m2Ag129.80(22) keV9.3(3) sβ (92%)116Cd(6-)
IT (8%)116Ag
117Ag4770116.911774(15)73.6(14) sβ117mCd1/2−#
117mAg28.6(2) keV5.34(5) sβ (94%)117mCd7/2+#
IT (6%)117Ag
118Ag4771117.9145955(27)3.76(15) sβ118Cd(2-)
118m1Ag45.79(9) keV~0.1 μsIT118Ag1(−) to 2(−)
118m2Ag127.63(10) keV2.0(2) sβ (59%)118Cd(5+)
IT (41%)118Ag
118m3Ag279.37(20) keV~0.1 μsIT118Ag(3+)
119Ag4772118.915570(16)6.0(5) sβ119mCd1/2−#
119mAg20(20)# keV2.1(1) sβ119Cd7/2+#
120Ag4773119.918785(5)1.52(7) sβ (>99.997%)120Cd4(+)
β, n (<.003%)119Cd
120m1Ag0(50)# keV940(100) ms(0−, 1-)
120m2Ag203.0(10) keV384(22) msIT (68%)120Sn7(−)
β (32%)120Cd
121Ag4774120.920125(13)777(10) msβ (99.92%)121Cd7/2+#
β, n (.076%)120Cd
121mAg20(20)# keV200# ms1/2-#
122Ag4775121.92366(4)529(13) msβ (>99.814%)122Cd(3+)
β, n (.186%)121Cd
122m1Ag80(50)# keV550(50) msβ122Cd(1-)
β, n (rare)121Cd
IT (rare)122Ag
122m2Ag80(50)# keV200(50) msβ122Cd(9-)
β, n (rare)121Cd
IT (rare)122Ag
122m3Ag171(50)# keV6.3(1) μsIT122Ag(1+)
123Ag4776122.92532(4)294(5) msβ (99.44%)123Cd(7/2+)
β, n (.56%)122Cd
123m1Ag59.5(5) keV100# msβ123Cd(1/2-)
β, n (rare)122Cd
123m2Ag1450(14)# keV202(20) nsIT123Ag
123m3Ag1472.8(8) keV393(16) nsIT123Ag(17/2-)
124Ag4777123.92890(27)#177.9(26) msβ (98.7%)124Cd(2-)
β, n (1.3%)123Cd
124m1Ag50(50)# keV144(20) msβ124Cd9-#
β, n123Cd
124m2Ag155.6(5)# keV140(50) nsIT124Ag(1+)
124m3Ag231.1(7)# keV1.48(15) μsIT124Ag(1-)
125Ag4778124.93074(47)160(5) msβ (88.2%)125Cd(9/2+)
β, n (11.8%)124Cd
125m1Ag97.1(5)# keV50# ms(1/2-)
125m2Ag97.1(5)# keV491(20) ns(17/2-)
126Ag4779125.93481(22)#52(10) msβ (86.3%)126Cd3+#
β, n (13.7%)125Cd
126m1Ag100(100)# keV108.4(24) ms9-#
126m2Ag97.1(5)# keV27(6) μsIT126Ag1-#
127Ag4780126.93704(22)#89(2) msβ (85.4%)127Cd(9/2+)
β, n (14.6%)126Cd
127m1Ag20(20)# keV20# ms(1/2-)
127m2Ag1938(17) keV67.5(9) msβ (91.2%)127Cd(27/2+)
IT (8.8%)127Ag
128Ag4781127.94127(32)#60(3) msβ (80%)128Cd3+#
β, n (20%)127Cd
129Ag4782128.94432(43)#49.9(35) msβ (>80%)129Cd9/2+#
β, n (<20%)128Cd
129mAg20(20)# keV10# ms1/2−#
130Ag4783129.95073(46)#40.6(45) msβ130Cd1-#
131Ag4784130.95625(54)#35(8) msβ131Cd9/2+#
β, n130Cd
β, 2n129Cd
132Ag4785131.96307(54)#30(14) msβ132Cd6-#
133Ag4786132.96878(54)#6-#
This table header & footer:

References