Isotopes of tellurium

(Redirected from Tellurium-125)

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

Isotopes of tellurium (52Te)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
120Te0.09%stable
121Tesynth16.78 dε121Sb
122Te2.55%stable
123Te0.89%stable[2]
124Te4.74%stable
125Te7.07%stable
126Te18.8%stable
127Tesynth9.35 hβ127I
128Te31.7%2.2×1024 yββ128Xe
129Tesynth69.6 minβ129I
130Te34.1%8.2×1020 yββ130Xe
Standard atomic weight Ar°(Te)

Naturally-occurring tellurium on Earth consists of eight isotopes. Two of these have been found to be radioactive: 128Te and 130Te undergo double beta decay with half-lives of, respectively, 2.2×1024 (2.2 septillion) years (the longest half-life of all nuclides proven to be radioactive)[5] and 8.2×1020 (820 quintillion) years. The longest-lived artificial radioisotope of tellurium is 121Te with a half-life of about 19 days. Several nuclear isomers have longer half-lives, the longest being 121mTe with a half-life of 154 days.

The very-long-lived radioisotopes 128Te and 130Te are the two most common isotopes of tellurium. Of elements with at least one stable isotope, only indium and rhenium likewise have a radioisotope in greater abundance than a stable one.

It has been claimed that electron capture of 123Te was observed, but more recent measurements of the same team have disproved this.[6] The half-life of 123Te is longer than 9.2 × 1016 years, and probably much longer.[6]

124Te can be used as a starting material in the production of radionuclides by a cyclotron or other particle accelerators. Some common radionuclides that can be produced from tellurium-124 are iodine-123 and iodine-124.

The short-lived isotope 135Te (half-life 19 seconds) is produced as a fission product in nuclear reactors. It decays, via two beta decays, to 135Xe, the most powerful known neutron absorber, and the cause of the iodine pit phenomenon.

With the exception of beryllium, tellurium is the second lightest element observed to have isotopes capable of undergoing alpha decay, with isotopes 104Te to 109Te being seen to undergo this mode of decay. Some lighter elements, namely those in the vicinity of 8Be, have isotopes with delayed alpha emission (following proton or beta emission) as a rare branch.

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7]
Spin and
parity
[n 8][n 5]
Natural abundance (mole fraction)
Excitation energyNormal proportionRange of variation
104Te[7]5252<18 nsα100Sn0+
105Te5253104.94364(54)#620(70) nsα101Sn5/2+#
106Te5254105.93750(14)70(20) μs
[70(+20−10) μs]
α102Sn0+
107Te5255106.93501(32)#3.1(1) msα (70%)103Sn5/2+#
β+ (30%)107Sb
108Te5256107.92944(11)2.1(1) sα (49%)104Sn0+
β+ (48.5%)108Sb
β+, p (2.4%)107Sn
β+, α (.065%)104In
109Te5257108.92742(7)4.6(3) sβ+ (86.99%)109Sb(5/2+)
β+, p (9.4%)108Sn
α (7.9%)105Sn
β+, α (.005%)105In
110Te5258109.92241(6)18.6(8) sβ+ (99.99%)110Sb0+
β+, p (.003%)109Sn
111Te5259110.92111(8)19.3(4) sβ+111Sb(5/2)+#
β+, p (rare)110Sn
112Te5260111.91701(18)2.0(2) minβ+112Sb0+
113Te5261112.91589(3)1.7(2) minβ+113Sb(7/2+)
114Te5262113.91209(3)15.2(7) minβ+114Sb0+
115Te5263114.91190(3)5.8(2) minβ+115Sb7/2+
115m1Te10(7) keV6.7(4) minβ+115Sb(1/2)+
IT115Te
115m2Te280.05(20) keV7.5(2) μs11/2−
116Te5264115.90846(3)2.49(4) hβ+116Sb0+
117Te5265116.908645(14)62(2) minβ+117Sb1/2+
117mTe296.1(5) keV103(3) msIT117Te(11/2−)
118Te5266117.905828(16)6.00(2) dEC118Sb0+
119Te5267118.906404(9)16.05(5) hβ+119Sb1/2+
119mTe260.96(5) keV4.70(4) dβ+ (99.99%)119Sb11/2−
IT (.008%)119Te
120Te5268119.90402(1)Observationally Stable[n 9]0+9(1)×10−4
121Te5269120.904936(28)19.16(5) dβ+121Sb1/2+
121mTe293.991(22) keV154(7) dIT (88.6%)121Te11/2−
β+ (11.4%)121Sb
122Te5270121.9030439(16)Stable0+0.0255(12)
123Te5271122.9042700(16)Observationally Stable[n 10]1/2+0.0089(3)
123mTe247.47(4) keV119.2(1) dIT123Te11/2−
124Te5272123.9028179(16)Stable0+0.0474(14)
125Te[n 11]5273124.9044307(16)Stable1/2+0.0707(15)
125mTe144.772(9) keV57.40(15) dIT125Te11/2−
126Te5274125.9033117(16)Stable0+0.1884(25)
127Te[n 11]5275126.9052263(16)9.35(7) hβ127I3/2+
127mTe88.26(8) keV109(2) dIT (97.6%)127Te11/2−
β (2.4%)127I
128Te[n 11][n 12]5276127.9044631(19)2.2(3)×1024 y[n 13]ββ128Xe0+0.3174(8)
128mTe2790.7(4) keV370(30) ns10+
129Te[n 11]5277128.9065982(19)69.6(3) minβ129I3/2+
129mTe105.50(5) keV33.6(1) dβ (36%)129I11/2−
IT (64%)129Te
130Te[n 11][n 12]5278129.9062244(21)8.2(0.2 (stat.), 0.6 (syst.))×1020 yββ130Xe0+0.3408(62)
130m1Te2146.41(4) keV115(8) ns(7)−
130m2Te2661(7) keV1.90(8) μs(10+)
130m3Te4375.4(18) keV261(33) ns
131Te[n 11]5279130.9085239(21)25.0(1) minβ131I3/2+
131mTe182.250(20) keV30(2) hβ (77.8%)131I11/2−
IT (22.2%)131Te
132Te[n 11]5280131.908553(7)3.204(13) dβ132I0+
133Te5281132.910955(26)12.5(3) minβ133I(3/2+)
133mTe334.26(4) keV55.4(4) minβ (82.5%)133I(11/2−)
IT (17.5%)133Te
134Te5282133.911369(11)41.8(8) minβ134I0+
134mTe1691.34(16) keV164.1(9) ns6+
135Te[n 14]5283134.91645(10)19.0(2) sβ135I(7/2−)
135mTe1554.88(17) keV510(20) ns(19/2−)
136Te5284135.92010(5)17.63(8) sβ (98.7%)136I0+
β, n (1.3%)135I
137Te5285136.92532(13)2.49(5) sβ (97.01%)137I3/2−#
β, n (2.99%)136I
138Te5286137.92922(22)#1.4(4) sβ (93.7%)138I0+
β, n (6.3%)137I
139Te5287138.93473(43)#500 ms
[>300 ns]#
β139I5/2−#
β, n138I
140Te5288139.93885(32)#300 ms
[>300 ns]#
β140I0+
β, n139I
141Te5289140.94465(43)#100 ms
[>300 ns]#
β141I5/2−#
β, n140I
142Te5290141.94908(64)#50 ms
[>300 ns]#
β142I0+
This table header & footer:

References