Isotopes of tin

(Redirected from Tin-122)

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994)[4] and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

Isotopes of tin (50Sn)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
112Sn0.970%stable
114Sn0.66%stable
115Sn0.34%stable
116Sn14.5%stable
117Sn7.68%stable
118Sn24.2%stable
119Sn8.59%stable
120Sn32.6%stable
122Sn4.63%stable
124Sn5.79%stable
126Sntrace2.3×105 yβ126Sb
Standard atomic weight Ar°(Sn)

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)[5]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4]Normal proportionRange of variation
99Sn[n 8]504998.94850(63)#24(4) msβ+ (95%)99In9/2+#
β+, p (5%)98Cd
100Sn505099.93865(26)1.18(8) sβ+ (>83%)100In0+
β+, p (<17%)99Cd
101Sn5051100.93526(32)2.22(5) sβ+101In(7/2+)
β+, p?100Cd
102Sn5052101.93029(11)3.8(2) sβ+102In0+
102mSn2017(2) keV367(8) nsIT102Sn(6+)
103Sn5053102.92797(11)#7.0(2) sβ+ (98.8%)103In5/2+#
β+, p (1.2%)102Cd
104Sn5054103.923105(6)20.8(5) sβ+104In0+
105Sn5055104.921268(4)32.7(5) sβ+105In(5/2+)
β+, p (0.011%)104Cd
106Sn5056105.916957(5)1.92(8) minβ+106In0+
107Sn5057106.915714(6)2.90(5) minβ+107In(5/2+)
108Sn5058107.911894(6)10.30(8) minβ+108In0+
109Sn5059108.911293(9)18.1(2) minβ+109In5/2+
110Sn5060109.907845(15)4.154(4) hEC110In0+
111Sn5061110.907741(6)35.3(6) minβ+111In7/2+
111mSn254.71(4) keV12.5(10) μsIT111Sn1/2+
112Sn5062111.9048249(3)Observationally Stable[n 9]0+0.0097(1)
113Sn5063112.9051759(17)115.08(4) dβ+113In1/2+
113mSn77.389(19) keV21.4(4) minIT (91.1%)113Sn7/2+
β+ (8.9%)113In
114Sn5064113.90278013(3)Stable0+0.0066(1)
114mSn3087.37(7) keV733(14) nsIT114Sn7−
115Sn5065114.903344696(16)Stable1/2+0.0034(1)
115m1Sn612.81(4) keV3.26(8) μs7/2+
115m2Sn713.64(12) keV159(1) μs11/2−
116Sn5066115.90174283(10)Stable0+0.1454(9)
117Sn5067116.9029540(5)Stable1/2+0.0768(7)
117m1Sn314.58(4) keV13.76(4) dIT117Sn11/2−
117m2Sn2406.4(4) keV1.75(7) μs(19/2+)
118Sn5068117.9016066(5)Stable0+0.2422(9)
119Sn5069118.9033113(8)Stable1/2+0.0859(4)
119m1Sn89.531(13) keV293.1(7) dIT119Sn11/2−
119m2Sn2127.0(10) keV9.6(12) μs(19/2+)
120Sn5070119.9022026(10)Stable0+0.3258(9)
120m1Sn2481.63(6) keV11.8(5) μs(7−)
120m2Sn2902.22(22) keV6.26(11) μs(10+)#
121Sn[n 10]5071120.9042435(11)27.03(4) hβ121Sb3/2+
121m1Sn6.30(6) keV43.9(5) yIT (77.6%)121Sn11/2−
β (22.4%)121Sb
121m2Sn1998.8(9) keV5.3(5) μs(19/2+)#
121m3Sn2834.6(18) keV0.167(25) μs(27/2−)
122Sn[n 10]5072121.9034455(26)Observationally Stable[n 11]0+0.0463(3)
123Sn[n 10]5073122.9057271(27)129.2(4) dβ123Sb11/2−
123m1Sn24.6(4) keV40.06(1) minβ123Sb3/2+
123m2Sn1945.0(10) keV7.4(26) μs(19/2+)
123m3Sn2153.0(12) keV6 μs(23/2+)
123m4Sn2713.0(14) keV34 μs(27/2−)
124Sn[n 10]5074123.9052796(14)Observationally Stable[n 12]0+0.0579(5)
124m1Sn2204.622(23) keV0.27(6) μs5-
124m2Sn2325.01(4) keV3.1(5) μs7−
124m3Sn2656.6(5) keV45(5) μs(10+)#
125Sn[n 10]5075124.9077894(14)9.64(3) dβ125Sb11/2−
125mSn27.50(14) keV9.52(5) minβ125Sb3/2+
126Sn[n 13]5076125.907659(11)2.30(14)×105 yβ (66.5%)126m2Sb0+< 10−14[6]
β (33.5%)126m1Sb
126m1Sn2218.99(8) keV6.6(14) μs7−
126m2Sn2564.5(5) keV7.7(5) μs(10+)#
127Sn5077126.910392(10)2.10(4) hβ127Sb(11/2−)
127mSn4.7(3) keV4.13(3) minβ127Sb(3/2+)
128Sn5078127.910508(19)59.07(14) minβ128Sb0+
128mSn2091.50(11) keV6.5(5) sIT128Sn(7−)
129Sn5079128.913482(19)2.23(4) minβ129Sb(3/2+)#
129mSn35.2(3) keV6.9(1) minβ (99.99%)129Sb(11/2−)#
IT (.002%)129Sn
130Sn5080129.9139745(20)3.72(7) minβ130Sb0+
130m1Sn1946.88(10) keV1.7(1) minβ130Sb(7−)#
130m2Sn2434.79(12) keV1.61(15) μs(10+)
131Sn5081130.917053(4)56.0(5) sβ131Sb(3/2+)
131m1Sn80(30)# keV58.4(5) sβ (99.99%)131Sb(11/2−)
IT (.0004%)131Sn
131m2Sn4846.7(9) keV300(20) ns(19/2− to 23/2−)
132Sn5082131.9178239(21)39.7(8) sβ132Sb0+
133Sn5083132.9239138(20)1.45(3) sβ (99.97%)133Sb(7/2−)#
β, n (.0294%)132Sb
134Sn5084133.928680(3)1.050(11) sβ (83%)134Sb0+
β, n (17%)133Sb
135Sn5085134.934909(3)530(20) msβ135Sb(7/2−)
β, n134Sb
136Sn5086135.93970(22)#0.25(3) sβ136Sb0+
β, n135Sb
137Sn5087136.94616(32)#190(60) msβ137Sb5/2−#
138Sn5088137.95114(43)#140 ms +30-20β138Sb
138mSn1344(2) keV210(45) ns
139Sn5089138.95780(43)#130 msβ139Sb
140Sn5090139.96297(32)#50# ms [>550 ns]β?140Sb0+
β, n?139Sb
β, 2n?138Sb
This table header & footer:

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).[7]

Tin-121m

Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.[8]

Tin-126

Yield, % per fission[8]
ThermalFast14 MeV
232Thnot fissile0.0481 ± 0.00770.87 ± 0.20
233U0.224 ± 0.0180.278 ± 0.0221.92 ± 0.31
235U0.056 ± 0.0040.0137 ± 0.0011.70 ± 0.14
238Unot fissile0.054 ± 0.0041.31 ± 0.21
239Pu0.199 ± 0.0160.26 ± 0.022.02 ± 0.22
241Pu0.082 ± 0.0190.22 ± 0.03?

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

References