14 (number)

(Redirected from XIV)

14 (fourteen) is the natural number following 13 and preceding 15.

← 13 14 15 →
Cardinalfourteen
Ordinal14th
(fourteenth)
Numeral systemtetradecimal
Factorization2 × 7
Divisors1, 2, 7, 14
Greek numeralΙΔ´
Roman numeralXIV
Greek prefixtetrakaideca-
Latin prefixquattuordec-
Binary11102
Ternary1123
Senary226
Octal168
Duodecimal1212
HexadecimalE16
Hebrew numeralי"ד
Babylonian numeral𒌋𒐘

Mathematics

Fourteen is the seventh composite number.

Properties

14 is the third distinct semiprime,[1] being the third of the form (where is a higher prime). More specifically, it is the first member of the second cluster of two discrete semiprimes (14, 15); the next such cluster is (21, 22), members whose sum is the fourteenth prime number, 43.

14 has an aliquot sum of 8, within an aliquot sequence of two composite numbers (14, 8, 7, 1, 0) in the prime 7-aliquot tree.

14 is the third companion Pell number and the fourth Catalan number.[2][3] It is the lowest even for which the Euler totient has no solution, making it the first even nontotient.[4]

According to the Shapiro inequality, 14 is the least number such that there exist , , , where:[5]

with and

A set of real numbers to which it is applied closure and complement operations in any possible sequence generates 14 distinct sets.[6] This holds even if the reals are replaced by a more general topological space; see Kuratowski's closure-complement problem.

After 11 (the third super-prime), 14 is the first of only two composite numbers whose arithmetic mean of divisors is the first perfect number and unitary perfect number, 6 (the other number is 15).[7][8]

14 is also the sum of the first three non-zero squares: .

Polygons

14 is the number of equilateral triangles that are formed by the sides and diagonals of a regular six-sided hexagon.[9] In a hexagonal lattice, 14 is also the number of fixed two-dimensional triangular-celled polyiamonds with four cells.[10]

14 is the number of elements in a regular heptagon (where there are seven vertices and edges), and the total number of diagonals between all its vertices.

There are fourteen polygons that can fill a plane-vertex tiling, where five polygons tile the plane uniformly, and nine others only tile the plane alongside irregular polygons.[11][12]

The fundamental domain of the Klein quartic is a regular hyperbolic 14-sided tetradecagon, with an area of .

The Klein quartic is a compact Riemann surface of genus 3 that has the largest possible automorphism group order of its kind (of order 168) whose fundamental domain is a regular hyperbolic 14-sided tetradecagon, with an area of by the Gauss-Bonnet theorem.

Solids

Several distinguished polyhedra in three dimensions contain fourteen faces or vertices as facets:

A regular tetrahedron cell, the simplest uniform polyhedron and Platonic solid, is made up of a total of 14 elements: 4 edges, 6 vertices, and 4 faces.

  • Szilassi's polyhedron and the tetrahedron are the only two known polyhedra where each face shares an edge with each other face, while Császár's polyhedron and the tetrahedron are the only two known polyhedra with a continuous manifold boundary that do not contain any diagonals.
  • Two tetrahedra that are joined by a common edge whose four adjacent and opposite faces are replaced with two specific seven-faced crinkles will create a new flexible polyhedron, with a total of 14 possible clashes where faces can meet.[18]pp.10-11,14 This is the second simplest known triangular flexible polyhedron, after Steffen's polyhedron.[18]p.16 If three tetrahedra are joined at two separate opposing edges and made into a single flexible polyhedron, called a 2-dof flexible polyhedron, each hinge will only have a total range of motion of 14 degrees.[18]p.139

14 is also the root (non-unitary) trivial stella octangula number, where two self-dual tetrahedra are represented through figurate numbers, while also being the first non-trivial square pyramidal number (after 5);[19][20] the simplest of the ninety-two Johnson solids is the square pyramid [a] There are a total of fourteen semi-regular polyhedra, when the pseudorhombicuboctahedron is included as a non-vertex transitive Archimedean solid (a lower class of polyhedra that follow the five Platonic solids).[21][22][b]

Fourteen possible Bravais lattices exist that fill three-dimensional space.[23]

G2

The exceptional Lie algebra G2 is the simplest of five such algebras, with a minimal faithful representation in fourteen dimensions. It is the automorphism group of the octonions , and holds a compact form homeomorphic to the zero divisors with entries of unit norm in the sedenions, .[24][25]

Riemann zeta function

The floor of the imaginary part of the first non-trivial zero in the Riemann zeta function is ,[26] in equivalence with its nearest integer value,[27] from an approximation of [28][29]

In science

Chemistry

14 is the atomic number of silicon, and the approximate atomic weight of nitrogen. The maximum number of electrons that can fit in an f sublevel is fourteen.

In religion and mythology

Christianity

According to the Gospel of Matthew "there were fourteen generations in all from Abraham to David, fourteen generations from David to the exile to Babylon, and fourteen from the exile to the Messiah". (Matthew 1, 17)

Islam

The number of Muqattaʿat in the Quran.

Mythology

The number of pieces the body of Osiris was torn into by his fratricidal brother Set.

The number 14 was regarded as connected to Šumugan and Nergal.[30]

In other fields

Fourteen is:

Notes

References

Bibliography