Солитон

(перенаправлено с «Уединённые волны»)

Солито́н — структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде.

Солитон
Изображение
Первооткрыватель или изобретательРассел, Джон Скотт
Дата открытия (изобретения)1834
Логотип Викисклада Медиафайлы на Викискладе
График «тёмного солитона»

Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а продолжают движение, сохраняя свою структуру неизменной. Это свойство может использоваться для передачи данных на большие расстояния без помех. Кроме того, в отличие от гармонических волн, классические солитоны помимо переноса энергии осуществляют также перенос вещества (сдвиг в направлении своего движения на конечное расстояние)[1].

История изучения солитона началась в августе 1834 года на берегу канала Юнион вблизи Эдинбурга. Джон Скотт Рассел наблюдал на поверхности воды явление, которое он назвал уединённой волной — «solitary wave»[2][3][4].

Впервые понятие солитона было введено для описания нелинейных волн, взаимодействующих как частицы[5]. Свойство солитонов переносить вещество предложено использовать в качестве одного из механизмов возбуждения электрических токов в плазме[6] и разделения вещества и антивещества в ранней Вселенной[7].

Солитоны бывают различной природы:

  • на поверхности жидкости[8] (первые солитоны, обнаруженные в природе[9]), иногда считают таковыми волны цунами и бор[10]
  • ионозвуковые и магнитозвуковые солитоны в плазме[11]
  • гравитационные солитоны в слоистой жидкости[12]
  • солитоны в виде коротких световых импульсов в активной среде лазера[13]
  • можно рассматривать в качестве солитонов нервные импульсы[14]
  • солитоны в нелинейно-оптических материалах[15][16]
  • солитоны в воздушной среде[17]

Математическая модель

Уравнение Кортевега — де Фриза

Распад синусоидальной волны на солитоны, наблюдавшийся Забуски и Крускалом при численном решении уравнения КдФ

Одной из простейших и наиболее известных моделей, допускающих существование солитонов в решении, является уравнение Кортевега — де Фриза:

Одним из возможных решений данного уравнения является уединённый солитон:

где  — амплитуда солитона,  — фаза. Эффективная ширина основания солитона равна . Такой солитон движется со скоростью . Видно, что солитоны с большой амплитудой оказываются более узкими и движутся быстрее[18].

В более общем случае можно показать, что существует класс многосолитонных решений, таких что асимптотически при решение распадается на несколько удалённых одиночных солитонов, движущихся с попарно различными скоростями. Общее N-солитонное решение можно записать в виде

где матрица даётся выражением

Здесь и  — произвольные вещественные постоянные.

Замечательным свойством многосолитонных решений является безотражательность: при исследовании соответствующего одномерного уравнения Шрёдингера

с потенциалом , убывающим на бесконечности быстрее чем , коэффициент отражения равен 0 тогда и только тогда, когда потенциал есть некоторое многосолитонное решение уравнения КдФ в некоторый момент времени .

Интерпретация солитонов как некоторых упруго взаимодействующих квазичастиц основана на следующем свойстве решений уравнения КдФ. Пусть при решение имеет асимптотический вид солитонов, тогда при оно также имеет вид солитонов с теми же самыми скоростями, но другими фазами, причём многочастичные эффекты взаимодействия полностью отсутствуют. Это означает, что полный сдвиг фазы -го солитона равен

Пусть -й солитон движется быстрее, чем -й, тогда

то есть фаза более быстрого солитона при парном столкновении увеличивается на величину , а фаза более медленного — уменьшается на , причём полный сдвиг фазы солитона после взаимодействия равен сумме сдвигов фаз от попарного взаимодействия с каждым другим солитоном.

Нелинейное уравнение Шрёдингера

Для нелинейного уравнения Шрёдингера:

при значении параметра допустимы уединённые волны в виде:

где  — некоторые постоянные, связанные соотношениями:


Дромион — решение уравнения Дэви-Стюартсона[19].

См. также

Примечания

Литература

  • Абловиц М., Сигур Х. Солитоны и метод обратной задачи. — М.: Мир, 1987. — 480 с.
  • Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. — М.: Мир, 1988. — 696 с.
  • Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов: Метод обратной задачи. — М.: Наука, 1980. — 320 с.
  • Инфельд Э., Роуландс Дж. Нелинейные волны, солитоны и хаос. — М.: Физматлит, 2006. — 480 с.
  • Лэм Дж. Л. Введение в теорию солитонов. — М.: Мир, 1983. — 294 с.
  • Ньюэлл А. Солитоны в математике и физике. — М.: Мир, 1989. — 328 с.
  • Ахмедиев Н. Н., Анкевич А. Солитоны. Нелинейные импульсы и пучки. — М.: Физматлит, 2003. — 304 с. — ISBN 5-9221-0344-X.
  • Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики. — М.: URSS, 2004. — 424 с.
  • Уизем Дж. Линейные и нелинейные волны. — М.: Мир, 1977. — 624 с.
  • Филиппов А. Т. Многоликий солитон. — Изд. 2-е, перераб. и доп.. — М.: Наука, 1990. — 288 с.
  • Барьяхтар В. Г., Захаров В. Е., Черноусенко В. М. Интегрируемость и кинетические уравнения для солитонов. — Киев: Наукова думка, 1990. — 472 с. — 1000 экз. — ISBN 5-12-001120-9.
  • Yaroslav V. Kartashov, Boris A. Malomed, Lluis Torner. Solitons in nonlinear lattices (англ.) // Reviews of Modern Physics. — 2011. — Vol. 83. — P. 247–306.
  • Focus: Landmarks—Computer Simulations Led to Discovery of Solitons (англ.) // Physics. — 2013. — Vol. 6. — P. 15. — doi:10.1103/Physics.6.15.

Ссылки

🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации