Формула Остроградского — Гаусса

(перенаправлено с «Формула Остроградского»)

Фо́рмула Остроградского — Гаусса связывает поток непрерывно-дифференцируемого векторного поля через замкнутую поверхность и интеграл от дивергенции этого поля по объёму, ограниченному этой поверхностью.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.

Формулировка

Поток вектора через замкнутую поверхность равен интегралу от взятому по объему , ограниченному поверхностью [1]

В координатной записи формула Остроградского — Гаусса принимает вид:

- проекции вектора
Следствия из теоремы Остроградского — Гаусса:
1) в бездивергентном поле ( ) поток вектора через любую замкнутую поверхность , являющуюся полной границей некоторого тела , равен нулю.
2) если внутри замкнутой поверхности имеется источник или сток, то поток вектора через эту поверхность, убывающий с расстоянием как , не зависит от её формы.

Замечания

В работе Остроградского формула записана в следующем виде:

где и  — дифференциалы объёма и поверхности соответственно.  — функции,непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью[2].

Современная запись формулы:

где , и . В современной записи  — элемент объёма,  — элемент поверхности[2].

Обобщением формулы Остроградского является формула Стокса для многообразий с краем.

История

Впервые теорема была установлена Лагранжем в 1762[3].

Общий метод преобразования тройного интеграла к поверхностному впервые показал Карл Фридрих Гаусс (1813, 1830) на примере задач электродинамики[4].

В 1826 году М. В. Остроградский вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году[4]. С помощью данной формулы Остроградский нашёл выражение производной по параметру от -кратного интеграла с переменными пределами и получил формулу для вариации -кратного интеграла.

За рубежом формула, как правило, называется «теоремой о дивергенции» (англ. divergence theorem), иногда — формулой Гаусса или «формулой (теоремой) Гаусса — Остроградского».

См. также

Примечания

Литература

  • Остроградский М. В. Note sur les integrales definies. // Mem. l’Acad. (VI), 1, стр. 117—122, 29/Х 1828 (1831).
  • Остроградский М. В. Memoire sur le calcul des variations des integrales multiples. // Mem. l’Acad., 1, стр. 35—58, 24/1 1834 (1838).