乙酸亚铬

化合物

乙酸亚铬化学式:Cr2(OAc)4(H2O)2),IUPAC名称为乙酸铬(II),是常见的(II)化合物之一。通常情况下为深红色的反磁性固体,以二水合物和无水物的形式存在。在水和甲醇中的溶解度较小。以二聚体分子存在,分子内含有Cr-Cr四重键。是Cr(II)化合物中比较稳定的一个,但对空气敏感,容易被氧化为Cr(III)化合物而发生颜色变化。乙酸亚铬的制备和性质分析通常是无机化学课程中的实验之一。

乙酸亚铬
IUPAC名
Chromium(II) acetate hydrate
别名乙酸铬(II)、二乙酸铬、
醋酸亚铬
识别
CAS号14976-80-8  checkY
PubChem120304
ChemSpider107397
SMILES
 
  • [Cr+2].[O-]C(=O)C.[O-]C(=O)C
InChI
 
  • 1/2C2H4O2.Cr/c2*1-2(3)4;/h2*1H3,(H,3,4);/q;;+2/p-2
InChIKeyLRCIYVMVWAMTKX-NUQVWONBAT
RTECSAG3000000
性质
化学式C8H16Cr2O10
摩尔质量376.2 g·mol⁻¹
外观砖红色固体
密度1.79 g/cm3
熔点> 100 °C 时失水
溶解性可溶于热水中
结构
晶体结构单斜晶系
配位几何八面体
分子构型见内文
偶极矩0 D
相关物质
相关化学品Rh2(OAc)4(H2O)2
Cu2(OAc)4(H2O)2
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

结构

Cr2(OAc)4(H2O)2是有羧结构的双核分子(D4h)。铬原子为八面体型配位,乙酸根作桥通过其两个氧原子把两个铬原子连在一起。每个铬原子分别与来自乙酸根的四个氧原子在同一平面配位,并与另一个铬原子发生作用。两个水分子占上下,分别与一个铬原子配位。Cr-O(羧氧)键长197pm,Cr-O(水)键长220pm,Cr-Cr距离为236.2±0.1pm。不存在轴向配体或羧酸根被等电子的含氮配体替代后,Cr-Cr距离可以减短至184pm。[1]

Cr-Cr之间为强的金属-金属四重键 ),σ键由两个铬原子的 轨道重叠形成,π键由 重叠形成,δ键则由 重叠形成。分子较小的磁矩及两个铬原子之间较短的距离都证实了Cr-Cr四重键的存在。

Cr(II)为 构型,因金属-金属键而完全成对,所以乙酸亚铬在室温时为反磁性的。其他羧酸的亚铬化合物,以及乙酸铜乙酸铑(II)都具有乙酸亚铬的“中国灯笼”式结构,但 中的金属-金属距离都不及乙酸亚铬中的Cr-Cr距离短,因此两个金属原子之间的作用较弱。[2]

乙酸亚铬的二聚体结构导致了它特殊的稳定性,也导致了它具有与其他Cr(II)化合物不同的颜色。Cr(II)化合物一般呈蓝色。

历史

乙酸亚铬首先由法国化学家皮里哥(Eugène-Melchior Peligot)在1844年合成,[3][4] 但该分子特殊的成键性质却是在100年之后才发现的。

1950年,King和Garnet[5] 注意到乙酸亚铬较反常的颜色和溶解度性质,认为这可能是由于分子中存在不同的成键类型而导致的。因此他们用实验测定羧酸亚铬的磁化率,结果发现羧酸亚铬无论是无水物还是水合物,都不含任何未成对电子,与普通的Cr(II)化合物(含4个未成对电子)形成了明显反差。为了解释这个反差,他们很明显是受了当时杂化轨道理论的影响,认为铬原子为 杂化,提出了一个现在看来有些古怪的理论。

乙酸亚铬的结构于1951年阐明。[6] 1956年Figgis和Martin提出四重键模型,[7] 但该分子中的四重键直到1970年准确测定分子中Cr-Cr距离后才得到广泛重视。[8]

制备

在水溶液中还原三价铬为二价铬的蓝色溶液,[9] 然后加入乙酸钠溶液,便会很快沉淀出亮红色的乙酸亚铬晶体。

生成的乙酸亚铬极易被少量混入的氧气所氧化,从而使亮红色的颜色褪去,因此制备反应一般都在隔绝空气的情况下(如Schlenk装置)进行。[10] 此外,无水的羧酸的亚铬化合物也可以以二茂铬作为原料制取。

应用

乙酸亚铬是亚铬化合物中相对较稳定的一个,因此常作为其他铬(II)化合物的制备原料。比如它与氯化氢反应可以得到氯化亚铬,与乙酰丙酮反应可以得到Cr(acac)2,等等。

此外乙酸亚铬也用作有机试剂(对α-溴代酮和α-氯代醇进行脱卤)[11]、氧气吸收剂及聚合物工业上的试剂[12]

参考资料

延伸阅读