Bullvalen

ungesättigter, polycyclischer Kohlenwasserstoff

Bullvalen ist ein ungesättigter polycyclischer, verbrückter Kohlenwasserstoff mit einer Käfigstruktur, der trotz eines Cyclopropan-Strukturelements äußerst stabil ist.

Strukturformel
Struktur von Bullvalen
Allgemeines
NameBullvalen
Andere Namen

Tricyclo[3.3.2.02,8]deca-3,6,9-trien (IUPAC)

SummenformelC10H10
Kurzbeschreibung

kristalliner Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer1005-51-2
PubChem136796
ChemSpider120549
WikidataQ420213
Eigenschaften
Molare Masse130,19 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

96 °C[1]

Siedepunkt

ab 400 °C: Zersetzung zu Naphthalin und Wasserstoff[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine Einstufung verfügbar[3]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).

Geschichte und Name

Der Ursprung des Namens Bullvalen ist nicht sicher bekannt. Möglicherweise basiert er auf dem Spitznamen von William „Bull“ Doering, der 1963 gemeinsam mit Wolfgang Richard Roth aufgrund theoretischer Berechnungen die Eigenschaften des Moleküls vorhersagte.[4][5] Die Erstsynthese gelang im gleichen Jahr Gerhard Schröder durch Photolyse eines dimeren Cyclooctatetraen unter Abspaltung von Benzol.[6]

Darstellung

Bullvalen ist synthetisch aus Cyclooctatetraen zugänglich. Durch Erhitzen von Cyclooctatetraen 1 erhält man ein Gemisch der beiden dimeren C16H16-Verbindungen 2 und 3.[7] Aus der pentacyclischen Verbindung 3, die ein Homotropiliden-Strukturelement aufweist, erhält man photochemisch durch UV-Bestrahlung Bullvalen 4 unter Abspaltung von Benzol 5.[6]


Synthese von Bullvalen aus Cyclooctatetraen

Eigenschaften und Reaktionen

Bullvalen bildet farblose Kristalle mit einem Schmelzpunkt von 96 °C. Erst bei 400 °C zerfällt die Substanz in Naphthalin und Wasserstoff. Die Verbindung geht die zu erwartenden Additionsreaktionen ein, indem jeweils 4 Mol Brom oder Wasserstoff für drei Doppelbindungen und den Cyclopropanring verbraucht werden. Durch wiederholte Bromierung und anschließender Dehydrobromierung sind substituierte Bullvalenderivate leicht zugänglich.[8] Die Brombullvalene wiederum können durch bekannte Substitutionsreaktionen in Aryl-, Alkyl- oder Fluorbullvalene überführt werden.

Struktur

Im Bullvalen sind die drei Kohlenstoffatome eines Cyclopropanrings über drei Vinylenbrücken sternförmig mit einem Methinrest zu einer überraschend stabilen tricyclischen Struktur verbunden.

Der Grund liegt in der Stabilisierung des Systems durch Valenzisomerie, in diesem Fall durch eine [3,3]-sigmatrope Umlagerung, der sogenannten Cope-Umlagerung. In einem diskreten Bullvalenmolekül liegen drei mögliche Cope-Systeme vor. Über einen sechsgliedrigen Übergangszustand bricht bei der Cope-Umlagerung im Bullvalender Cyclopropanring auf und unter Verschiebung der Doppelbindungen wird ein neuer Cyclopropanring gebildet. Infolge der spezifischen Struktur des Bullvalens geht aus dieser Umlagerung jedoch wieder ein Bullvalenmolekül hervor, nur nehmen die Kohlenstoffatome individuell andere Plätze im neuen Molekül ein. Man bezeichnet dieses Phänomen auch als entartete Cope-Umlagerung


Die drei Cope-Systeme (rot) eines Bullvalen-Moleküls, mit den
jeweiligen Valenzisomeren der intramolekularen Cope-Umlagerung

Ab 100 °C erfolgen die Cope-Umlagerungen zwischen den mehr als 1,2 Millionen Valenzisomeren (genau 10!/3 = 1.209.600 Möglichkeiten) so rasch, dass das 1H-NMR-Spektrum der Wasserstoffatome nur mehr ein einziges, scharfes Signal bei 4,2 ppm aufweist.[9][10] Das bedeutet, dass bei dieser Temperatur alle Wasserstoffatome gleichwertig sind und führte zum Ausdruck der „fluktuierenden Struktur“. Diese Annahme konnte durch Röntgenstrukturanalyse bei Raumtemperatur und Neutronenbeugungsexperimente bei 100 K bewiesen werden.[1]

Siehe auch

Einzelnachweise