Flächengruppe

In der Gruppentheorie, einem Teilgebiet der Mathematik, werden die Fundamentalgruppen geschlossener, orientierbarer Flächen als Flächengruppen (engl.: surface groups) bezeichnet.

Definition

Sei eine natürliche Zahl und die geschlossene, orientierbare Fläche vom Geschlecht .

Die Fundamentalgruppen werden als Flächengruppen bezeichnet.

Präsentierung

Die Flächengruppe hat die Präsentierung

.

Zum Beispiel ist .

Hyperbolizität

Mit Ausnahme von sind alle Flächengruppen hyperbolisch. Max Dehn benutzte hyperbolische Geometrie, um das Wortproblem für Flächengruppen zu lösen.[2] Diese Arbeit gilt als Vorläufer für die in den 1980er Jahren von Gromow entwickelte Theorie der hyperbolischen Gruppen.

Flächengruppen sind – wie alle hyperbolischen Gruppen – automatische Gruppen, ihr Wortproblem lässt sich also in quadratischer Zeit lösen.

Darstellungen (Höhere Teichmüllertheorie)

Die Theorie der Darstellungen von Flächengruppen in Lie-Gruppen wird als Höhere Teichmüller-Theorie bezeichnet. Klassische Teichmüller-Theorie ist der Spezialfall , in diesem Fall vermittelt die Holonomie eine Bijektion zwischen dem Teichmüller-Raum und einer Zusammenhangskomponente von .

Zusammenhangskomponenten der Darstellungsvarietät

Im Folgenden bezeichnet die Darstellungsvarietät, deren Zusammenhangskomponenten – für zusammenhängende Lie-Gruppen – den Zusammenhangskomponenten von entsprechen.

  • Für kompakte, zusammenhängende Gruppen entsprechen die Zusammenhangskomponenten der Darstellungsvarietät den Elementen von .[3]
  • Für werden die Zusammenhangskomponenten der Darstellungsvarietät durch die Werte der Euler-Klasse klassifiziert. Weil nach der Milnor-Wood-Ungleichung die Euler-Klasse genau die ganzzahligen Werte im Intervall annehmen kann, hat die Darstellungsvarietät Zusammenhangskomponenten. Eine Darstellung ist treu mit diskretem Bild genau dann, wenn .[4]
  • Für hat die Darstellungsvarietät Zusammenhangskomponenten.
  • Für oder werden die Zusammenhangskomponenten von durch die Werte der zweiten Stiefel-Whitney-Klasse klassifiziert, die Darstellungsvarietät hat zwei Zusammenhangskomponenten.
  • Für oder ist die Darstellungsvarietät zusammenhängend.
  • Für mit hat die Darstellungsvarietät 3 Komponenten, falls ungerade ist, und 6 Komponenten, falls gerade ist. Der Beweis benutzt die Theorie der Higgs-Bündel.[5]

Literatur

  • Heiner Zieschang, Elmar Vogt, Hans-Dieter Coldewey: Flächen und ebene diskontinuierliche Gruppen (= Lecture Notes in Mathematics. Bd. 122). Springer, Berlin u. a. 1970.

Einzelnachweise