Radeon 200 series

(Redirected from AMD Radeon Rx 200 series)

The Radeon 200 series is a series of graphics processors developed by AMD. These GPUs are manufactured on a 28 nm Gate-Last process through TSMC or Common Platform Alliance.[8]

Radeon 200 series
AMD Radeon graphics logo
Release dateOctober 8, 2013; 10 years ago (October 8, 2013)
Codename
  • Southern Islands
  • Sea Islands
  • Volcanic Islands
Architecture
Transistors
  • 370M (Caicos) 40 nm
  • 950M (Oland) 28 nm
  • 1.500M (Cape Verde) 28 nm
  • 2.080M (Bonaire) 28 nm
  • 2.800M (Pitcairn) 28 nm
  • 4.313M (Tahiti) 28 nm
  • 5.000M (Tonga) 28 nm
  • 6.200M (Hawaii) 28 nm
  • 2 x 6.200M (Vesuvius) 28 nm
Cards
Entry-level
  • Radeon R5 220
  • Radeon R5 230
  • Radeon R5 235
  • Radeon R5 235X
  • Radeon R5 240
  • Radeon R7 240
  • Radeon R7 250
  • Radeon R7 250E
Mid-range
  • Radeon R7 250X
  • Radeon R7 260
  • Radeon R7 260X
  • Radeon R7 265
  • Radeon R9 270
  • Radeon R9 270X
High-end
  • Radeon R9 280
  • Radeon R9 280X
  • Radeon R9 285
Enthusiast
  • Radeon R9 290
  • Radeon R9 290X
  • Radeon R9 295X2
API support
DirectX
OpenCLOpenCL 2.1 (GCN version)
OpenGLOpenGL 4.5 (4.6 Windows 7+ and Adrenalin 18.4.1+)[1][2][3][4][5]
Vulkan
History
Predecessor
SuccessorRadeon 300 series
Support status
Unsupported

Release

The Rx 200 series was announced on September 25, 2013, at the AMD GPU14 Tech Day event.[9] Non-disclosure agreements were lifted on October 15, except for the R9 290X, and pre-orders opened on October 3.[10]

Architecture

  • Graphics Core Next 3 (Volcanic Islands) is found on the R9 285 (Tonga Pro) branded products.
  • Graphics Core Next 2 (Sea Islands) is found on R7 260 (Bonaire), R7 260X (Bonaire XTX), R9 290 (Hawaii Pro), R9 290X (Hawaii XT), and R9 295X2 (Vesuvius) branded products.
  • Graphics Core Next 1 (Southern Islands) is found on R9 270, 270X, 280, 280X, R7 240, 250, 250X, 265, and R5 240 branded products.
  • TeraScale 2 (VLIW5) (Northern Islands or Evergreen) is found on R5 235X and below branded products.
  • OpenGL 4.x compliance requires supporting FP64 shaders. These are implemented by emulation on some TeraScale (microarchitecture) GPUs.
  • Vulkan 1.0 requires GCN-Architecture. Vulkan 1.1 requires GCN 2 or higher.[11]

Multi-monitor support

The AMD Eyefinity-branded on-die display controllers were introduced in September 2009 in the Radeon HD 5000 series and have been present in all products since.[12]

AMD TrueAudio

AMD TrueAudio was introduced with the AMD Radeon Rx 200 series, but can only be found on the dies of GCN 2/3 products.

Video acceleration

AMD's SIP core for video acceleration, Unified Video Decoder and Video Coding Engine, are found on all GPUs and supported by AMD Catalyst and by the free and open-source graphics device driver.

Use in cryptocurrency mining

During 2014 the Radeon R9 200 series GPUs offered a very competitive price for usage in cryptocurrency mining. This led to limited supply and huge price increases of up to 164% over the MSRP in Q4 of 2013 and Q1 of 2014.[13][14] Since Q2 of 2018 availability of AMD GPUs as well as pricing has, in most cases, returned to normal.

CrossFire Compatibility

Because many of the products in the range are rebadged versions of Radeon HD products, they remain compatible with the original versions when used in CrossFire mode. For example, the Radeon HD 7770 and Radeon R7 250X both use the 'Cape Verde XT' chip so have identical specifications and will work in CrossFire mode. This provides a useful upgrade option for anyone who owns an existing Radeon HD card and has a CrossFire compatible motherboard.

Virtual super resolution support

Starting with the driver release candidate version v14.501-141112a-177751E, officially named as Catalyst Omega, AMD's driver release introduced VSR on the R9 285 and R9 290 series graphics cards. This feature allows users to run games with higher image quality by rendering frames at above native resolution. Each frame is then downsampled to native resolution. This process is an alternative to supersampling which is not supported by all games. Virtual super resolution is similar to Dynamic Super Resolution, a feature available on competing nVidia graphics cards, but trades flexibility for increased performance.[15][16] VSR can run at a resolution upwards of 2048 x 1536 at a 120 Hz refresh rate or 3840 x 2400 at 60 Hz.[17]

OpenCL (API)

OpenCL accelerates many scientific Software Packages against CPU up to factor 10 or 100 and more.Open CL 1.0 to 1.2 are supported for all Chips with Terascale and GCN Architecture. OpenCL 2.0 is supported with GCN 2nd Gen. (or 1.2) and higher.[18] For OpenCL 2.1 and 2.2 only Driver Updates are necessary with OpenCL 2.0 conformant Cards.

Vulkan (API)

API Vulkan 1.0 is supported for all GCN architecture cards. Vulkan 1.2 requires GCN 2nd gen or higher with the Adrenalin 20.1 and Linux Mesa 20.0 drivers and newer.

Desktop models

Radeon R9 295X2

The Radeon R9 295X2 was released on April 21, 2014. It is a dual GPU card. Press samples were shipped in a metal case. It is the first reference card to utilize a closed looped liquid cooler.[19][20] At 11.5 teraflops of computing power, the R9 295X2 was the most powerful dual-gpu consumer-oriented card in the world, until it was succeeded by the Radeon Pro Duo on April 26, 2016, which is essentially a combination of two R9 Fury X (Fiji XT) GPUs on a single card.[19] The R9 295x2 has essentially two R9 290x (Hawaii XT) GPUs each with 4GB GDDR5 VRAM.[19]

Radeon R9 290X

A R9 290X by Sapphire

The Radeon R9 290X, codename "Hawaii XT", was released on October 24, 2013 and features 2816 Stream Processors, 176 TMUs, 64 ROPs, 512-bit wide buses, 44 CUs (compute units) and 8 ACE units. The R9 290X had a launch price of $549.

Radeon R9 290

The Radeon R9 290 and R9 290X were announced on September 25, 2013.[21][22] The R9 290 is based on AMD's Hawaii Pro chip and R9 290X on Hawaii XT. R9 290 and R9 290X will support AMD TrueAudio, Mantle, Direct3D 11.2, and bridge-free Crossfire technology using XDMA. A limited "Battlefield 4 Edition" pre-order bundle of R9 290X that includes Battlefield 4 was available on October 3, 2013, with reported quantity being 8,000. The R9 290 had a launch price of $399.

Radeon R9 285

The Radeon R9 285 was announced on August 23, 2014 at AMD's 30 years of graphics celebration and released September 2, 2014. It was the first card to feature AMD's GCN 3 microarchitecture, in the form of a Tonga-series GPU.

Radeon R9 280X

Radeon R9 280X was announced on September 25, 2013. With a launch price of $299, it is based on the Tahiti XTL chip, being a slightly upgraded, rebranded Radeon HD 7970 GHz Edition.

Radeon R9 280

Radeon R9 280 was announced on March 4, 2014. With a launch MSRP set at $279, it is based on a rebranded Radeon HD 7950 with a slightly increased boost clock speed, from 925 MHz to 933 MHz.[23]

Radeon R9 270X

Radeon R9 270X was announced on September 25, 2013. With a launch price of $199 (2 GB) and $229 (4 GB), it is based on the Curaçao XT chip, which was formerly called Pitcairn.[24] It is speculated to be faster than a Radeon HD 7870 GHz edition. Radeon R9 270 has a launch price of $179.

Radeon R7 260X

Radeon R7 260X was announced on September 25, 2013. With a launch price of $139, it is based on the Bonaire XTX chip, a faster iteration of Bonaire XT that the Radeon HD 7790 is based on. It will have 2 GB of GDDR5 memory as standard and will also feature TrueAudio, on-chip audio DSP based on Tensilica HiFi EP architecture. The stock card features a boost clock of 1100 MHz. It has 2 GBs of GDDR5 memory with a 6.5 GHz memory clock over a 128-bit Interface. The 260X will draw around 115 W in typical use.[25][26]

Radeon R7 250

Radeon R7 250 was announced on September 25, 2013. It has a launch price of $89.[25] The card is based on the Oland core with 384 GCN cores. On February 10, 2014, AMD announced the R7 250X which is based on the Cape Verde GPU with 640 GCN cores and an MSRP of $99.[27]

Chipset table

Desktop models

Model
(codename)
Release Date
& Price
Architecture
Fab
Transistors
& Die Size
CoreFillrate[a][b][c]Processing power[a][d]
(GFLOPS)
MemoryTBPBus interface
Config[e]Clock[a] (MHz)Texture (GT/s)Pixel (GP/s)SingleDoubleSize (MiB)Bus type
& width
Clock (MT/s)Band-
width (GB/s)
Radeon
R5 220[28]
(Caicos Pro)
December 21, 2013
OEM
Terascale 2[f]
40 nm
370×106
67 mm2
80:8:4625
650
52.52001024DDR3
64-bit
10668.5318 WPCIe 2.1 ×16
Radeon
R5 230[29]
(Caicos Pro)
April 3, 2014[30]
?
160:8:462552.52001024
2048
DDR3
64-bit
10668.5319 W[31]
Radeon
R5 235[28]
(Caicos XT)
December 21, 2013
OEM
160:8:47756.23.12481024DDR3
64-bit
180014.435 W[32]
Radeon
R5 235X[28]
(Caicos XT)
December 21, 2013
OEM
160:8:48757.03.52801024DDR3
64-bit
180014.418 W
Radeon
R5 240[28]
(Oland)
November 1, 2013[33]
OEM
GCN 1st gen
28 nm
1040×106
90 mm2
384:24:8730
780
14.65.84560.6
599
29.21024
2048
DDR3
GDDR3
64-bit
1800
2000

14.4
16.0

30 WPCIe 3.0 ×8
Radeon
R7 240[34]
(Oland Pro)
August 8, 2013
US $69
320:20:8730
780
14.65.84467.2
499.2
29.22048
4096
DDR3
GDDR5
128-bit
1800
4500

28.8
72

30 W, <45 W (4 GB)[35]
Radeon
R7 250[34]
(Oland XT)
August 8, 2013
US $89
384:24:81000
(1050)
248768
806.4
481024
2048
DDR3
GDDR5
128-bit
1800
4600

28.8
73.6

75 W
Radeon
R7 250E[36]
(Cape Verde Pro)
December 21, 2013
US $109
1500×106
123 mm2
512:32:1680025.612.8819.251.21024
2048
GDDR5
128-bit
45007255 WPCIe 3.0 ×16
Radeon
R7 250X[34]
(Cape Verde XT)
February 10, 2014
US $99
640:40:16100040161280801024
2048
GDDR5
128-bit
45007295 W
Radeon
R7 260[34]
(Bonaire)
December 17, 2013
US $109
GCN 2nd gen
28 nm
2080×106
160 mm2
768:48:16100048161536961024GDDR5
128-bit
60009695 W
Radeon
R7 260X[34]
(Bonaire XTX)
August 8, 2013
US $139
896:56:16110061.617.61971.2123.21024
2048
GDDR5
128-bit
6500104115 W
Radeon
R7 265[34]
(Pitcairn Pro)
February 13, 2014
US $149
GCN 1st gen
28 nm
2800×106
212 mm2
1024:64:32900
925
57.628.81843.2115.22048GDDR5
256-bit
5600179.2150 W
Radeon
R9 270[37]
(Pitcairn XT)
November 13, 2013
US $179
1280:80:32900
925
7228.82304
2368
144
148
2048GDDR5
256-bit
5600179.2150 W
Radeon
R9 270X[37]
(Pitcairn XT)
August 8, 2013
US $199
1280:80:321000
1050
80322560
2688
160
168
2048
4096
GDDR5
256-bit
5600179.2180 W
Radeon
R9 280[37]
(Tahiti Pro)
March 4, 2014
US $249
4313×106
352 mm2
1792:112:32827
933
92.626.52964
3343.9
741
836
3072GDDR5
384-bit
5000240250 W
Radeon
R9 280X[37]
(Tahiti XTL)[38]
August 8, 2013
US $299
2048:128:32850
1000
109–12827.2–323481.6
4096
870.4
1024
3072GDDR5
384-bit
6000288250 W
Radeon
R9 285[37]
(Tonga Pro)
September 2, 2014
US $249
GCN 3rd gen
28 nm
5000×106
359 mm2 [39]
1792:112:32918102.829.43290206.6[40]2048GDDR5
256-bit
5500176[g]190 W
Radeon
R9 285X
(Tonga XT)
Unreleased [42]2048:128:321002128.332.14104256.53072GDDR5
384-bit
5500264200 W
Radeon
R9 290[37]
(Hawaii Pro)
November 5, 2013
US $399
GCN 2nd gen
28 nm
6200×106
438 mm2 [43]
2560:160:64up to 947[h]151.5260.6084848.6606.14096GDDR5
512-bit
5000320250 W[45]
Radeon
R9 290X[37]
(Hawaii XT)
October 24, 2013
November 6, 2014[46]
US $549
2816:176:641000[h]1766456327044096
8192
GDDR5
512-bit
5000320250 W[45]
Radeon
R9 295X2[37][47]
(Vesuvius)
April 8, 2014
US $1499
6200×106
2× 438 mm2
2× 2816:176:641018358.33130.311466.751433.342× 4096GDDR5
512-bit
50002× 320500 W
Model
(codename)
Release Date
& Price
Architecture
Fab
Transistors
& Die Size
Config[e]Clock[a] (MHz)Texture (GT/s)Pixel (GP/s)SingleDoubleSize (MiB)Bus type
& width
Clock (MT/s)Band-
width (GB/s)
TBPBus interface
CoreFillrate[a][b][c]Processing power[a][d]
(GFLOPS)
Memory


Mobile models

Model
(Codename)
LaunchArchitecture
(Fab)
CoreFillrate[a][b][c]Processing power[a][d]
(GFLOPS)
MemoryTDP
Config[e]Clock[a] (MHz)Texture (GT/s)Pixel (GP/s)Size (GiB)Bus type
& width
Clock (MT/s)Band-
width (GB/s)
Radeon
R5 M230
(Jet Pro)
January 2014GCN 1st gen
(28 nm)
320:20:8:5780
855
3.417.15472
4
DDR3
64-bit
200016Un­known
Radeon
R5 M255
(Jet Pro)
June 2014320:20:8:5925
940
7.518.86012
4
DDR3
64-bit
200016Un­known
Radeon
R7 M260
(Topaz)
June 2014384:24:8:6620
980
5.7
7.8
17.2
23.5
549.1
752.6
2
4
DDR3
64-bit
1800
2000
14.4
16
Un­known
Radeon
R7 M260X
(Opal)
June 2014384:24:8:6620
715
5.717.25492
4
GDDR5
128-bit
400064Un­known
Radeon
R7 M265
(Opal XT)
May 2014384:24:8:6725
825
6.619.8633.62
4
DDR3
64-bit
1800
2000
14.4
16
Un­known
Radeon
R9 M265X
(Venus Pro)
May 2014640:40:16:10575
625
10258002
4
GDDR5
128-bit
450072Un­known
Radeon
R9 M270X
(Venus XT)
May 2014640:40:16:10725
775
12.4319922
4
GDDR5
128-bit
450072Un­known
Radeon
R9 M275X
(Venus XTX)
May 2014640:40:16:10900
925
14.83711842
4
GDDR5
128-bit
45007250 W
Radeon
R9 M280X
(Saturn XT)
February 2015GCN 2nd gen
(28 nm)
896:56:16:141000
1100
17.661.617922
4
GDDR5
128-bit
600096~75 W
Radeon
R9 M290X
(Neptune XT)
May 2014GCN 1st gen
(28 nm)
1280:80:32:20850
900
28.8722176
2304
4GDDR5
256-bit
4800153.6100 W
Radeon
R9 M295X
(Amethyst XT)
November 2014GCN 3rd gen
(28 nm)
2048:128:32:32750
800
25.6102.43276.84GDDR5
256-bit
5500176250 W

Radeon Feature Matrix

The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).

Name of GPU seriesWonderMach3D RageRage ProRage 128R100R200R300R400R500R600RV670R700EvergreenNorthern
Islands
Southern
Islands
Sea
Islands
Volcanic
Islands
Arctic
Islands
/Polaris
VegaNavi 1xNavi 2xNavi 3x
Released19861991Apr
1996
Mar
1997
Aug
1998
Apr
2000
Aug
2001
Sep
2002
May
2004
Oct
2005
May
2007
Nov
2007
Jun
2008
Sep
2009
Oct
2010
Jan
2012
Sep
2013
Jun
2015
Jun 2016, Apr 2017, Aug 2019Jun 2017, Feb 2019Jul
2019
Nov
2020
Dec
2022
Marketing NameWonderMach3D
Rage
Rage
Pro
Rage
128
Radeon
7000
Radeon
8000
Radeon
9000
Radeon
X700/X800
Radeon
X1000
Radeon
HD 2000
Radeon
HD 3000
Radeon
HD 4000
Radeon
HD 5000
Radeon
HD 6000
Radeon
HD 7000
Radeon
200
Radeon
300
Radeon
400/500/600
Radeon
RX Vega, Radeon VII
Radeon
RX 5000
Radeon
RX 6000
Radeon
RX 7000
AMD support
Kind2D3D
Instruction set architectureNot publicly knownTeraScale instruction setGCN instruction setRDNA instruction set
MicroarchitectureTeraScale 1
(VLIW)
TeraScale 2
(VLIW5)
TeraScale 2
(VLIW5)

up to 68xx
TeraScale 3
(VLIW4)

in 69xx [48][49]
GCN 1st
gen
GCN 2nd
gen
GCN 3rd
gen
GCN 4th
gen
GCN 5th
gen
RDNARDNA 2RDNA 3
TypeFixed pipeline[a]Programmable pixel & vertex pipelinesUnified shader model
Direct3D5.06.07.08.19.0
11 (9_2)
9.0b
11 (9_2)
9.0c
11 (9_3)
10.0
11 (10_0)
10.1
11 (10_1)
11 (11_0)11 (11_1)
12 (11_1)
11 (12_0)
12 (12_0)
11 (12_1)
12 (12_1)
11 (12_1)
12 (12_2)
Shader model1.42.0+2.0b3.04.04.15.05.15.1
6.5
6.7
OpenGL1.11.21.32.1[b][50]3.34.5 (on Linux: 4.5 (Mesa 3D 21.0))[51][52][53][c]4.6 (on Linux: 4.6 (Mesa 3D 20.0))
Vulkan1.0
(Win 7+ or Mesa 17+)
1.2 (Adrenalin 20.1.2, Linux Mesa 3D 20.0)
1.3 (GCN 4 and above (with Adrenalin 22.1.2, Mesa 22.0))
1.3
OpenCLClose to Metal1.1 (no Mesa 3D support)1.2+ (on Linux: 1.1+ (no Image support on clover, with by rustiCL) with Mesa 3D, 1.2+ on GCN 1.Gen)2.0+ (Adrenalin driver on Win7+)
(on Linux ROCM, Linux Mesa 3D 1.2+ (no Image support in clover, but in rustiCL with Mesa 3D, 2.0+ and 3.0 with AMD drivers or AMD ROCm), 5th gen: 2.2 win 10+ and Linux RocM 5.0+
2.2+ and 3.0 windows 8.1+ and Linux ROCM 5.0+ (Mesa 3D rustiCL 1.2+ and 3.0 (2.1+ and 2.2+ wip))[54][55][56]
HSA / ROCm ?
Video decoding ASICAvivo/UVDUVD+UVD 2UVD 2.2UVD 3UVD 4UVD 4.2UVD 5.0 or 6.0UVD 6.3UVD 7 [57][d]VCN 2.0 [57][d]VCN 3.0 [58]VCN 4.0
Video encoding ASICVCE 1.0VCE 2.0VCE 3.0 or 3.1VCE 3.4VCE 4.0 [57][d]
Fluid Motion [e] ?
Power saving?PowerPlayPowerTunePowerTune & ZeroCore Power?
TrueAudioVia dedicated DSPVia shaders
FreeSync1
2
HDCP[f]?1.42.22.3 [59]
PlayReady[f]3.0 3.0
Supported displays[g]1–222–6?
Max. resolution?2–6 ×
2560×1600
2–6 ×
4096×2160 @ 30 Hz
2–6 ×
5120×2880 @ 60 Hz
3 ×
7680×4320 @ 60 Hz [60]

7680×4320 @ 60 Hz PowerColor
7680x4320

@165 HZ

/drm/radeon[h]
/drm/amdgpu[h]Experimental [61]Optional [62]

Graphics device drivers

AMD's proprietary graphics device driver "Catalyst"

AMD Catalyst is being developed for Microsoft Windows and Linux. As of July 2014, other operating system are not officially supported. This may be different for the AMD FirePro brand, which is based on identical hardware but features OpenGL-certified graphics device drivers.

AMD Catalyst supports of course all features advertised for the Radeon brand.

Free and open-source graphics device driver "Radeon"

The free and open-source drivers are primarily developed on Linux and for Linux, but have been ported to other operating systems as well. Each driver is composed out of five parts:

  1. Linux kernel component DRM
  2. Linux kernel component KMS driver: basically the device driver for the display controller
  3. user-space component libDRM
  4. user-space component in Mesa 3D;
  5. a special and distinct 2D graphics device driver for X.Org Server, which if finally about to be replaced by Glamor

The free and open-source "Radeon" graphics driver supports most of the features implemented into the Radeon line of GPUs.[4] Unlike the nouveau project for Nvidia graphics cards, the open-source "Radeon" drivers are not reverse engineered, but based on documentation released by AMD.[63]

See also

References

External links