Grothendieck space

In mathematics, a Grothendieck space, named after Alexander Grothendieck, is a Banach space in which every sequence in its continuous dual space that converges in the weak-* topology (also known as the topology of pointwise convergence) will also converge when is endowed with which is the weak topology induced on by its bidual. Said differently, a Grothendieck space is a Banach space for which a sequence in its dual space converges weak-* if and only if it converges weakly.

Characterizations

Let be a Banach space. Then the following conditions are equivalent:

  1. is a Grothendieck space,
  2. for every separable Banach space every bounded linear operator from to is weakly compact, that is, the image of a bounded subset of is a weakly compact subset of
  3. for every weakly compactly generated Banach space every bounded linear operator from to is weakly compact.
  4. every weak*-continuous function on the dual is weakly Riemann integrable.

Examples

  • Every reflexive Banach space is a Grothendieck space. Conversely, it is a consequence of the Eberlein–Šmulian theorem that a separable Grothendieck space must be reflexive, since the identity from is weakly compact in this case.
  • Grothendieck spaces which are not reflexive include the space of all continuous functions on a Stonean compact space and the space for a positive measure (a Stonean compact space is a Hausdorff compact space in which the closure of every open set is open).
  • Jean Bourgain proved that the space of bounded holomorphic functions on the disk is a Grothendieck space.[1]

See also

References

  • J. Diestel, Geometry of Banach spaces, Selected Topics, Springer, 1975.
  • J. Diestel, J. J. Uhl: Vector measures. Providence, R.I.: American Mathematical Society, 1977. ISBN 978-0-8218-1515-1.
  • Shaw, S.-Y. (2001) [1994], "Grothendieck space", Encyclopedia of Mathematics, EMS Press
  • Khurana, Surjit Singh (1991). "Grothendieck spaces, II". Journal of Mathematical Analysis and Applications. 159 (1). Elsevier BV: 202–207. doi:10.1016/0022-247x(91)90230-w. ISSN 0022-247X.
  • Nisar A. Lone, on weak Riemann integrability of weak* - continuous functions. Mediterranean journal of Mathematics, 2017.
🔥 Top keywords: Main PageSpecial:SearchPage 3Wikipedia:Featured picturesHouse of the DragonUEFA Euro 2024Bryson DeChambeauJuneteenthInside Out 2Eid al-AdhaCleopatraDeaths in 2024Merrily We Roll Along (musical)Jonathan GroffJude Bellingham.xxx77th Tony AwardsBridgertonGary PlauchéKylian MbappéDaniel RadcliffeUEFA European Championship2024 ICC Men's T20 World CupUnit 731The Boys (TV series)Rory McIlroyN'Golo KantéUEFA Euro 2020YouTubeRomelu LukakuOpinion polling for the 2024 United Kingdom general electionThe Boys season 4Romania national football teamNicola CoughlanStereophonic (play)Gene WilderErin DarkeAntoine GriezmannProject 2025