Iminoborane

Iminoboranes comprise a group of organoboron compounds with the formula RB=NR'. They are electronically related to acetylenes but are usually more reactive due to the polarity.[2][3]

Iminoborane

Iminoborane (parent compound)
Names
Other names
Boraneimine
Identifiers
3D model (JSmol)
  • R,R'=H: InChI=1S/BH2N/c1-2/h1-2H
    Key: LNLSXDSWJBUPHM-UHFFFAOYSA-N
  • R,R'=H: B=N
Properties
BH2N
Molar mass26.83 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Structure of tBuN=B-tBu (tBu = tert-butyl). The B-N bond distance is 126 pm.[1]

Structure and bonding

The parent iminoborane, HB=NH, is produced by the photolysis of H3BNH3.[4][5][6] Bonding in iminoboranes can be described by two resonance structures:[7]

The stability is dramatically affected by bulky substituents. One isolable iminoborane is (CH3)3C−B≡N+−C(CH3)3.[1]

Comparison of bond lengths in simple boron-nitrogen hydrides
MoleculeAmmonia borane[8]Aminoborane[9]Iminoborane[10]
FormulaBNH6BNH4BNH2
Classamine-boraneaminoboraneiminoborane
Analogous hydrocarbonethaneethyleneacetylene
Analogous hydrocarbon classalkanealkenealkyne
Structure
Ball-and-stick model
Hybridisation of boron and nitrogensp3sp2sp
B-N bond length1.658 Å1.391 Å1.238 Å
Proportion of B-N single bond100%84%75%
B-H bond length1.216 Å1.195 Å
N-H bond length1.014 Å1.004 Å
Structure determination methodmicrowave spectroscopymicrowave spectroscopyinfrared spectroscopy

Synthesis

Elimination of fluoro- or chlorosilanes provides a well-tested route. Bulky substituents such as (Me3Si)3Si stabilize the iminoborane with respect to oligomerization:[11]

(Me3Si)3SiB(F)-N(SiMe3)2 (Me3Si)3Si-B=N-SiMe3 + F-SiMe3

Thermal decomposition of azidoboranes induces migration of R from boron to the nascent nitrene gives iminoboranes:[12]

R2B-N3 RB=NR + N2

Reactivity

Oligomerization

Iminoboranes tend to oligomerize, often forming cyclic derivatives. Preventing this reaction is the purpose of bulky substituents. Five types of oligomerization product are produced: cyclodimers (1,3-diaza-2,4-diboretidines,[1] Di[13]), cyclotrimers (borazines, Tr), bicyclotrimers (Dewar borazines, Tr[14]), cyclotetramers (octahydro-1,3,5,7-tetraza-2,4,6,8-tetraborocines, Te[15]), and polymers (polyiminoboranes, Po); which are shown below.[16] Which product is dominant depends on the structures of reactants and the reaction conditions. Some of the products can be interconverted.[17]

Addition reactions

The addition of protic agents is fast and quantitive.[18] Boration reaction of iminoboranes is the addition of B-X single bond to B≡N, where -X can be -Cl (chloro-boration), -N3 (azido-boration), -SR (thio-boration), -NR2 (amino-boration) and R (alkyl-boration). One of these reactions are illustrated here.

Some electron-rich iminoboranes form adducts with Lewis acids.[19]

Cycloaddition

The typical [2+3]-cycloaddition is the addition of B≡N and RN3 to give a BN4 ring.[1] One of the widely investigated [2+2]-cycloadditions is the reaction of aldehydes and ketones.

Coordination to transition metals

Like alkynes, iminoboranes bind transition metals.

References