List of quantum processors

This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.

Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published qubit numbers do not reflect the performance levels of the processor. This is instead achieved through benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]

Circuit-based quantum processors

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

ManufacturerName/codename

designation

ArchitectureLayoutFidelity (%)Qubits (physical)Release dateQuantum volume
Alpine Quantum TechnologiesPINE System[2]Trapped ion24[3]June 7, 2021128[4]
Atom ComputingPhoenixNeutral atoms in optical lattices100[5]August 10, 2021
Atom ComputingN/ANeutral atoms in optical lattices1180[6][7]October 2023
GoogleN/ASuperconductingN/A99.5[8]202017
GoogleN/ASuperconducting7×7 lattice99.7[8]49[9]Q4 2017 (planned)
GoogleBristleconeSuperconducting transmon6×12 lattice99 (readout)
99.9 (1 qubit)
99.4 (2 qubits)
72[10][11]March 5, 2018
GoogleSycamoreSuperconducting transmon9×6 latticeN/A53 effective (54 total)2019
IBMIBM Q 5 TenerifeSuperconductingbow tie99.897 (average gate)
98.64 (readout)
52016[8]
IBMIBM Q 5 YorktownSuperconductingbow tie99.545 (average gate)
94.2 (readout)
5
IBMIBM Q 14 MelbourneSuperconductingN/A99.735 (average gate)
97.13 (readout)
14
IBMIBM Q 16 RüschlikonSuperconducting2×8 lattice99.779 (average gate)
94.24 (readout)
16[12]May 17, 2017
(Retired: 26 September 2018)[13]
IBMIBM Q 17SuperconductingN/AN/A17[12]May 17, 2017
IBMIBM Q 20 TokyoSuperconducting5×4 lattice99.812 (average gate)
93.21 (readout)
20[14]November 10, 2017
IBMIBM Q 20 AustinSuperconducting5×4 latticeN/A20(Retired: 4 July 2018)[13]
IBMIBM Q 50 prototypeSuperconducting transmonN/AN/A50[14]
IBMIBM Q 53SuperconductingN/AN/A53October 2019
IBMIBM EagleSuperconductingN/AN/A127[15]November 2021
IBMIBM Osprey[6][7]SuperconductingN/AN/A433[15]November 2022
IBMIBM Condor[16][6]SuperconductingN/AN/A1121[15]December 2023
IBMIBM Heron[16][6]SuperconductingN/AN/A133December 2023
IBMIBM Armonk[17]SuperconductingSingle QubitN/A1October 16, 2019
IBMIBM Ourense[17]SuperconductingTN/A5July 3, 2019
IBMIBM Vigo[17]SuperconductingTN/A5July 3, 2019
IBMIBM London[17]SuperconductingTN/A5September 13, 2019
IBMIBM Burlington[17]SuperconductingTN/A5September 13, 2019
IBMIBM Essex[17]SuperconductingTN/A5September 13, 2019
IBMIBM Athens[18]SuperconductingN/A532[19]
IBMIBM Belem[18]SuperconductingFalcon r4T[20]N/A516[20]
IBMIBM Bogotá[18]SuperconductingFalcon r4L[20]N/A532[20]
IBMIBM Casablanca[18]SuperconductingFalcon r4H[20]N/A7(Retired – March 2022)32[20]
IBMIBM Dublin[18]SuperconductingN/A2764
IBMIBM Guadalupe[18]SuperconductingFalcon r4P[20]N/A1632[20]
IBMIBM KolkataSuperconductingN/A27128
IBMIBM Lima[18]SuperconductingFalcon r4T[20]N/A58[20]
IBMIBM Manhattan[18]SuperconductingN/A6532[19]
IBMIBM Montreal[18]SuperconductingFalcon r4[20]N/A27128[20]
IBMIBM Mumbai[18]SuperconductingFalcon r5.1[20]N/A27128[20]
IBMIBM Paris[18]SuperconductingN/A2732[19]
IBMIBM Quito[18]SuperconductingFalcon r4T[20]N/A516[20]
IBMIBM Rome[18]SuperconductingN/A532[19]
IBMIBM Santiago[18]SuperconductingN/A532[19]
IBMIBM Sydney[18]SuperconductingFalcon r4[20]N/A2732[20]
IBMIBM Toronto[18]SuperconductingFalcon r4[20]N/A2732[20]
Intel17-Qubit Superconducting Test ChipSuperconducting40-pin cross gapN/A17[21][22]October 10, 2017
IntelTangle LakeSuperconducting108-pin cross gapN/A49[23]January 9, 2018
IntelTunnel FallsSemiconductor spin qubits12[24]June 15, 2023
IonQHarmonyTrapped ionAll-to-All[20]11[25]20228[20]
IonQAriaTrapped ionAll-to-All[20]25[25]2022
IonQForteTrapped ion32x1 chain[26] All-to-All[20]99.98 (1 qubit)
98.5–99.3 (2 qubit)[26]
32[25]2022
IQM-SuperconductingStar99.91 (1 qubit)
99.14 (2 qubits)
5[27]November 30, 2021[28]N/A
IQM-SuperconductingSquare lattice99.91 (1 qubit median)
99.944 (1 qubit max)
98.25 (2 qubits median)
99.1 (2 qubits max)
20October 9, 2023[29]16[30]
M Squared LasersMaxwellNeutral atoms in optical lattices99.5 (3-qubit gate), 99.1 (4-qubit gate)[31]200[32]November 2022
Oxford Quantum CircuitsLucy[33]Superconducting82022
Oxford Quantum CircuitsOQC Toshiko[34]Superconducting322023
QuandelaAscellaPhotonicsN/A99.6 (1 qubit)
93.8 (2 qubits)
86.0 (3 qubits)
6[35]2022[36]
QuTech at TU DelftSpin-2Semiconductor spin qubits99 (average gate)
85 (readout)[37]
22020
QuTech at TU Delft-Semiconductor spin qubits6[38]September 2022
QuTech at TU DelftStarmon-5SuperconductingX configuration97 (readout)[39]52020
QuantinuumH2[40]Trapped ionRacetrack, All-to-All99.997 (1 qubit)
99.8 (2 qubit)
56[41] (earlier 32)May 9, 202365,536[42]
QuantinuumH1-1[43]Trapped ion15×15 (Circuit Size)99.996 (1 qubit)
99.914 (2 qubit)
2020221,048,576[44]
QuantinuumH1-2 [43]Trapped ionAll-to-All[20]99.996 (1 qubit)
99.7 (2 qubit)
1220224096[45]
QuantwareSoprano[46]Superconducting99.9 (single-qubit gates)5July 2021
QuantwareContralto[47]Superconducting99.9 (single-qubit gates)25March 7, 2022[48]
QuantwareTenor[49]Superconducting64February 23, 2023
RigettiAgaveSuperconductingN/A96 (Single-qubit gates)

87 (Two-qubit gates)

8June 4, 2018[50]
RigettiAcornSuperconducting transmonN/A98.63 (Single-qubit gates)

87.5 (Two-qubit gates)

19[51]December 17, 2017
RigettiAspen-1SuperconductingN/A93.23 (Single-qubit gates)

90.84 (Two-qubit gates)

16November 30, 2018[50]
RigettiAspen-4Superconducting99.88 (Single-qubit gates)

94.42 (Two-qubit gates)

13March 10, 2019
RigettiAspen-7Superconducting99.23 (Single-qubit gates)

95.2 (Two-qubit gates)

28November 15, 2019
RigettiAspen-8Superconducting99.22 (Single-qubit gates)

94.34 (Two-qubit gates)

31May 5, 2020
RigettiAspen-9Superconducting99.39 (Single-qubit gates)

94.28 (Two-qubit gates)

32February 6, 2021
RigettiAspen-10Superconducting99.37 (Single-qubit gates)

94.66 (Two-qubit gates)

32November 4, 2021
RigettiAspen-11SuperconductingOctagonal[20]99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY)40December 15, 2021
RigettiAspen-M-1Superconducting transmonOctagonal[20]99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY)80February 15, 20228[20]
RigettiAspen-M-2Superconducting transmon99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY)80August 1, 2022
RigettiAspen-M-3Superconducting transmonN/A99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY)80[52]December 2, 2022
RigettiAnkaa-2Superconducting transmonN/A98 (Two-qubit gates)84[53]December 20, 2023
RIKENRIKEN[54]SuperconductingN/AN/A53 effective (64 total)[55][56]March 27, 2023N/A
SpinQTriangulumNuclear magnetic resonance3[57]September 2021
USTCJiuzhangPhotonicsN/AN/A76[58][59]2020
USTCZuchongzhiSuperconductingN/AN/A62[60]2020
USTCZuchongzhi 2.1Superconductinglattice[61]99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout)66[62]2021
XanaduBorealis[63]Photonics (Continuous-variable)N/AN/A216[63]2022[63]
XanaduX8 [64]Photonics (Continuous-variable)N/AN/A82020
XanaduX12Photonics (Continuous-variable)N/AN/A122020[64]
XanaduX24Photonics (Continuous-variable)N/AN/A242020[64]
CASXiaohong[65]SuperconductingN/AN/A504[65]2024

Annealing quantum processors

These QPUs are based on quantum annealing, not to be confused with digital annealing.[66]

ManufacturerName/Codename

/Designation

ArchitectureLayoutFidelity (%)QubitsRelease date
D-WaveD-Wave One (Rainier)SuperconductingC4 = Chimera(4,4,4)[67] = 4×4 K4,4N/A128May 11, 2011
D-WaveD-Wave TwoSuperconductingC8 = Chimera(8,8,4)[67] = 8×8 K4,4N/A5122013
D-WaveD-Wave 2XSuperconductingC12 = Chimera(12,12,4)[67] = 12×12 K4,4N/A11522015
D-WaveD-Wave 2000QSuperconductingC16 = Chimera(16,16,4)[67] = 16×16 K4,4N/A20482017
D-WaveD-Wave AdvantageSuperconductingPegasus P16[68]N/A57602020
D-WaveD-Wave Advantage 2[69][70][71][72]Superconducting[69][70]Zephyr Z15[72][73]N/A7000+[69][70][71][72][73]Late 2024 either 2025[69][70][71][72][73]

Analog quantum processors

These QPUs are based on analog Hamiltonian simulation.

ManufacturerName/Codename/DesignationArchitectureLayoutFidelity (%)QubitsRelease date
QuEraAquilaNeutral atomsN/AN/A256[74]November 2022

See also

References