Isotopes of neodymium

(Redirected from Neodymium-150)

Naturally occurring neodymium (60Nd) is composed of 5 stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and 2 long-lived radioisotopes, 144Nd and 150Nd. In all, 33 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 of 7×1018 years), and for practical purposes they can be considered to be stable as well. All of the remaining radioactive isotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 13 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).

Isotopes of neodymium (60Nd)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
142Nd27.2%stable
143Nd12.2%stable
144Nd23.8%2.29×1015 yα140Ce
145Nd8.3%stable
146Nd17.2%stable
148Nd5.80%stable
150Nd5.60%9.3×1018 y[1]ββ150Sm
Standard atomic weight Ar°(Nd)

The primary decay modes before the most abundant stable isotope (also the only theoretically stable isotope), 142Nd, are electron capture and positron decay, and the primary mode after is beta decay. The primary decay products before 142Nd are praseodymium isotopes and the primary products after are promethium isotopes.

Neodymium isotopes as fission products

Neodymium is one of the more common fission products that results from the splitting of uranium-233, uranium-235, plutonium-239 and plutonium-241. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors in Gabon had produced a natural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth.[4][5][6]

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7]
Spin and
parity
[n 8][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5]Normal proportionRange of variation
124Nd6064123.95223(64)#500# ms0+
125Nd6065124.94888(43)#600(150) ms5/2(+#)
126Nd6066125.94322(43)#1# s [>200 ns]β+126Pr0+
127Nd6067126.94050(43)#1.8(4) sβ+127Pr5/2+#
β+, p (rare)126Ce
128Nd6068127.93539(21)#5# sβ+128Pr0+
β+, p (rare)127Ce
129Nd6069128.93319(22)#4.9(2) sβ+129Pr5/2+#
β+, p (rare)128Ce
130Nd6070129.92851(3)21(3) sβ+130Pr0+
131Nd6071130.92725(3)33(3) sβ+131Pr(5/2)(+#)
β+, p (rare)130Ce
132Nd6072131.923321(26)1.56(10) minβ+132Pr0+
133Nd6073132.92235(5)70(10) sβ+133Pr(7/2+)
133m1Nd127.97(11) keV~70 sβ+133Pr(1/2)+
133m2Nd176.10(10) keV~300 ns(9/2–)
134Nd6074133.918790(13)8.5(15) minβ+134Pr0+
134mNd2293.1(4) keV410(30) μs(8)–
135Nd6075134.918181(21)12.4(6) minβ+135Pr9/2(–)
135mNd65.0(2) keV5.5(5) minβ+135Pr(1/2+)
136Nd6076135.914976(13)50.65(33) minβ+136Pr0+
137Nd6077136.914567(12)38.5(15) minβ+137Pr1/2+
137mNd519.43(17) keV1.60(15) sIT137Nd(11/2–)
138Nd6078137.911950(13)5.04(9) hβ+138Pr0+
138mNd3174.9(4) keV410(50) ns(10+)
139Nd6079138.911978(28)29.7(5) minβ+139Pr3/2+
139m1Nd231.15(5) keV5.50(20) hβ+ (88.2%)139Pr11/2–
IT (11.8%)139Nd
139m2Nd2570.9+X keV≥141 ns
140Nd6080139.90955(3)3.37(2) dEC140Pr0+
140mNd2221.4(1) keV600(50) μs7–
141Nd6081140.909610(4)2.49(3) hβ+141Pr3/2+
141mNd756.51(5) keV62.0(8) sIT (99.95%)141Nd11/2–
β+ (.05%)141Pr
142Nd6082141.9077233(25)Stable0+0.272(5)0.2680–0.2730
143Nd[n 9]6083142.9098143(25)Observationally Stable[n 10]7/2−0.122(2)0.1212–0.1232
144Nd[n 9][n 11]6084143.9100873(25)2.29(16)×1015 yα140Ce0+0.238(3)0.2379–0.2397
145Nd[n 9]6085144.9125736(25)Observationally Stable[n 12]7/2−0.083(1)0.0823–0.0835
146Nd[n 9]6086145.9131169(25)Observationally Stable[n 13]0+0.172(3)0.1706–0.1735
147Nd[n 9]6087146.9161004(25)10.98(1) dβ147Pm5/2−
148Nd[n 9]6088147.916893(3)Observationally Stable[n 14]0+0.057(1)0.0566–0.0578
149Nd[n 9]6089148.920149(3)1.728(1) hβ149Pm5/2−
150Nd[n 9][n 11][n 15]6090149.920891(3)9.3(7)×1018 y[1]ββ150Sm0+0.056(2)0.0553–0.0569
151Nd6091150.923829(3)12.44(7) minβ151Pm3/2+
152Nd6092151.924682(26)11.4(2) minβ152Pm0+
153Nd6093152.927698(29)31.6(10) sβ153Pm(3/2)−
154Nd6094153.92948(12)25.9(2) sβ154Pm0+
154m1Nd480(150)# keV1.3(5) μs
154m2Nd1349(10) keV>1 μs(5−)
155Nd6095154.93293(16)#8.9(2) sβ155Pm3/2−#
156Nd6096155.93502(22)5.49(7) sβ156Pm0+
156mNd1432(5) keV135 ns5−
157Nd6097156.93903(21)#1.17(4) s[9]β157Pm5/2−#
158Nd6098157.94160(43)#700# ms [>300 ns]β158Pm0+
159Nd6099158.94609(54)#500# msβ159Pm7/2+#
160Nd60100159.94909(64)#300# msβ160Pm0+
161Nd60101160.95388(75)#200# msβ161Pm1/2−#
This table header & footer:

References