Jump to content

Schrödinger–HJW theorem

From Wikipedia, the free encyclopedia

In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger,[1] Lane P. Hughston, Richard Jozsa and William Wootters.[2] The result was also found independently (albeit partially) by Nicolas Gisin,[3] and by Nicolas Hadjisavvas building upon work by Ed Jaynes,[4][5] while a significant part of it was likewise independently discovered by N. David Mermin.[6] Thanks to its complicated history, it is also known by various other names such as the GHJW theorem,[7] the HJW theorem, and the purification theorem.

Purification of a mixed quantum state

Let be a finite-dimensional complex Hilbert space, and consider a generic (possibly mixed) quantum state defined on and admitting a decomposition of the form

for a collection of (not necessarily mutually orthogonal) states and coefficients such that . Note that any quantum state can be written in such a way for some and .[8]

Any such can be purified, that is, represented as the partial trace of a pure state defined in a larger Hilbert space. More precisely, it is always possible to find a (finite-dimensional) Hilbert space and a pure state such that . Furthermore, the states satisfying this are all and only those of the form

for some orthonormal basis . The state is then referred to as the "purification of ". Since the auxiliary space and the basis can be chosen arbitrarily, the purification of a mixed state is not unique; in fact, there are infinitely many purifications of a given mixed state.[9] Because all of them admit a decomposition in the form given above, given any pair of purifications , there is always some unitary operation such that

Theorem

Consider a mixed quantum state with two different realizations as ensemble of pure states as and . Here both and are not assumed to be mutually orthogonal. There will be two corresponding purifications of the mixed state reading as follows:

Purification 1: ;
Purification 2: .

The sets and are two collections of orthonormal bases of the respective auxiliary spaces. These two purifications only differ by a unitary transformation acting on the auxiliary space, namely, there exists a unitary matrix such that .[10] Therefore, , which means that we can realize the different ensembles of a mixed state just by making different measurements on the purifying system.

References

🔥 Top keywords: Main PageSpecial:SearchWikipedia:Featured picturesYasukeHarrison ButkerRobert FicoBridgertonCleopatraDeaths in 2024Joyce VincentXXXTentacionHank AdamsIt Ends with UsYouTubeNew Caledonia2024 Indian general electionHeeramandiDarren DutchyshenSlovakiaKingdom of the Planet of the ApesAttempted assassination of Robert FicoLawrence WongBaby ReindeerXXX: Return of Xander CageThelma HoustonFuriosa: A Mad Max SagaMegalopolis (film)Richard GaddKepler's SupernovaWicked (musical)Sunil ChhetriXXX (2002 film)Ashley MadisonAnya Taylor-JoyPlanet of the ApesNava MauYoung SheldonPortal:Current eventsX-Men '97