Tropic Shale

The Tropic Shale is a Mesozoic geologic formation. Dinosaur remains are among the fossils that have been recovered from the formation,[2] including Nothronychus graffami.The Tropic Shale is a stratigraphic unit of the Kaiparowits Plateau of south central Utah. The Tropic Shale was first named in 1931 after the town of Tropic where the Type section is located.[3] The Tropic Shale outcrops in Kane and Garfield counties, with large sections of exposure found in the Grand Staircase–Escalante National Monument.

Tropic Shale
Stratigraphic range: Cenomanian to Turonian
Tropic Shale at its type location at Tropic, Utah
TypeGeological formation
Unit ofKaiparowits Plateau
UnderliesStraight Cliffs Formation
OverliesDakota Formation
ThicknessMaximum 1,450 feet (440 m), average 600 feet (180 m)
Lithology
PrimaryShale
Location
Coordinates37°37′44″N 112°04′34″W / 37.629°N 112.076°W / 37.629; -112.076
Region Utah
Country United States
Type section
Named forExposures near Tropic, Garfield County, Utah
Named byGregory and Moore, 1931[1]
Tropic Shale is located in the United States
Tropic Shale
Tropic Shale (the United States)
Tropic Shale is located in Utah
Tropic Shale
Tropic Shale (Utah)

Geology

The Tropic Shale is predominantly marine mudstone and claystone, with several radioisotopically-dated bentonite marker beds, and occasional sandstone layers deposited during the late Cretaceous Period during the Upper Cenomanian through the Middle Turonian (95-92 Ma). The Tropic Shale has an average thickness range from 183–274 m.

The Tropic Shale conformity overlies the Dakota Formation and underlies the Straight Cliffs Formation. The top of the Dakota Formation is known for its sandier coarsening up sequences and estuarine shell beds. The distinction between the Tropic Shale and underlying Dakota is marked by the appearance of marine mudstones. In some localities there is a sharp non conformable contact between the Dakota Formation and Tropic Shale. The contact with the overlying Straight Cliffs is gradational with the distinction between the two units defined as the point where sandstone becomes more abundant than shale.

The Tropic Shale has two dominate lithologies, with the lower two thirds of the formation consisting of a bluish gray calcareous mudstone that encompasses eleven ammonoid biozones, and the upper third that is a darker gray and non-calcareous that encompasses only one or two ammonoid biozones. Additionally the upper portion, hummocky cross stratified and turbiditic sandstone beds become more common.

Stratigraphy and age

The Tropic Shale has been correlated temporally with the Tununk Member of the Mancos Shale in central Utah, the Allen Valley Shale of the western Wasatch Range in Utah,[4] the Mancos Shale exposed at Black Mesa, Arizona, and additionally the Bridge Creek Member of the Greenhorn Limestone at Pueblo, Colorado. Bentonite layers present in all these formations have been correlated throughout deposits associated with the Western Interior Seaway.

Solid and septarian carbonate concretionary nodule horizons are characteristic of the lower and middle parts of the formation informally named as concretionary layer 1-4. The statigraphically[check spelling] lowest is layer one with the stratigraphically highest being layer 4. Layers 1 and 2 seem to be in isolated sections while layers 3 and 4 seem to have a wide distribution and act as marker beds between Bentonite "A" and "B". The ammonites Sciponoceras gracile and Euomphaloceras septemseriatum are commonly preserved in these concretionary nodules.

The bentonites of the Tropic Shale form erosional benches that can be easily traced throughout the formation. These bentonites have been correlated with other formations that are interpreted as part of the Western Interior Seaway. They are white to light grey when freshly exposed or can have a yellowish discoloration when weathered. The average thickness of these bentonite beds is 1–6 mm. They are organized using a lettered system (A-E) with the lowest stratigraphically positioned bentonite being "A" and the highest stratigraphically positioned bentonite being "E". Several of these bentonites have also been related to known ammonoid biozones. Bentonites "A" and "B" are associated with massive accumulations of clam fossils.

Radioisotopically dated beds:[5]

BentoniteDateError +/-Correlated Ammonoid Zone
"A"93.490.89Upper Cenomanian biozone Euomphaloceras septemseriatum
"B"93.590.58upper Cenomanian biozone of Neocardioceras juddii
"C"93.250.55Lower Turonia biozone of Vascoceras birchbyi
"D"93.400.63-
"E"---
Ammonite biozones[6]
GenusSpeciesDateError +/-Stage
Prionocyclushyatti92.460.58Middle Turonian
Collignoniceraspraecox--Middle Turonian
Collignoniceraswoollgari--Middle Turonian
Mammitesnodosoides--Lower Turonian
Vascocerasbirchbyi93.480.58Lower Turonian
Pseudoaspidocerasflexuosum93.10.42Lower Turonian
Watinocerasdevonense--Lower Turonian
Nigericerasscotti--Upper Cenomanian
Neocardiocerasjuddii93.32 / 93.82.38 / .3Upper Cenomanian
Burrocerasclydense--Upper Cenomanian
Euomphalocerasseptemseriatum93.680.5Upper Cenomanian
Vascocerasdiartianum93.990.72Upper Cenomanian

Paleontology

Fossils have been found throughout the entire section of the Tropic Shale. Invertebrates such as ammonites and innoceramid clams seem to dominate. Shark remains consist almost entirely of tooth remains while marine reptiles vary in preservation from isolated fragments to articulated specimens.

The Tropic Shale is known for a wide assortment of marine vertebrates with minor contributions from terrestrial vertebrates. Recovered fossils include sharks, fishes, marine reptiles, turtles and dinosaurs. The marine deposition of vertebrates such as dinosaurs is interpreted as animals being washed out to sea while still alive in a storm event that then drowned or decomposing animals that were washed out to sea in a bloat and float model of transportation.[7]

Reptiles

Dinosaurs

Dinosaurs reported from the Tropic Shale
GenusSpeciesPresenceMaterialNotesImages
NothronychusN. graffamiKaiparowits Basin, Kane County, Utah.[8]UMNH VP 16420 (nearly complete postcranial skeleton).[7][8]A therizinosaur.

Mosasaurs

Mosasaurs reported from the Tropic Shale
GenusSpeciesPresenceMaterialNotesImages
SarabosaurusS. dahliGLCA site 327, Glen Canyon National Recreation Area.[9]Fragments of cranium, mandible, and vertebrae (UMNH VP21800).A plioplatecarpine.

Plesiosaurs

Plesiosaurs reported from the Tropic Shale
GenusSpeciesPresenceMaterialNotesImages
BrachaucheniusB. lucasiPartial skeleton (MNA V9433).[7]A pliosaurid.
EopolycotylusE. rankiniPartial skeleton (MNA V9445).[7]A polycotylid.
PalmulasaurusP. quadratusPartial skeleton (MNA V9442).[7]A polycotylid.
ScalamagnusS. tropicensisNearly complete specimen with associated gastroliths (MNA V10046).[7]A polycotylid.
TrinacromerumT. ?bentonianumMultiple specimens.[7]A polycotylid.

Turtles

Turtles reported from the Tropic Shale
GenusSpeciesPresenceMaterialNotesImages
DesmatochelysD. lowiPartial skeleton (MNA V9446).[7]A protostegid.
NaomichelysN. sp.Fragmentary carapace & plastron with a limb fragment (MNA V9461).[7]A helochelydrid.
Protostegidae Genus et sp. indet.IndeterminateMNA V9458.[7]Provisionally identified as a possible new genus.[7]

Fish

Bony fish

Bony fish reported from the Tropic Shale
GenusSpeciesPresenceMaterialNotesImages
GillicusG. arcuatusNearly complete articulated skeleton (MNA V10081).[7]An ichthyodectiform.
IchthyodectesI. ctenodonA specimen with dentaries, 6 vertebrae & skull fragments (MNA V9467).[7]An ichthyodectid.
I. sp., cf. I. ctenodonFragmentary lower jaw (MNA V9483).[7]An ichthyodectid.
PachyrhizodusP. leptopsisGrand Staircase–Escalante National Monument[10]A disarticulated specimen (MNA V10651).[10]A crossognathiform.
PycnodontoideiGenus & species undeterminedPremaxillae with dentition (MNA V10076).[7]A pycnodont.
XiphactinusX. sp., cf. X. audaxFin, vertebral & skull elements.[7]An ichthyodectid.

Cartilaginous fish

Cartilaginous fish reported from the Tropic Shale
GenusSpeciesPresenceMaterialNotesImages
CretalamnaC. appendiculataTeeth.[7]A megatooth shark.
CretoxyrhinaC. mantelli7 teeth.[7]A mackerel shark.
PtychodusP. anonymus16 teeth.[7]A ptychodontid.
P. decurrensVertebrae & hundreds of teeth.[7]A ptychodontid.
P. occidentalis4 teeth.[7]A ptychodontid.
P. sp. cf. P. mammillarisNumerous teeth.[7]A ptychodontid.
P. sp. indet.A tooth (MNA V9982).[7]A ptychodontid.
P. whippleiMultiple teeth.[7]A ptychodontid.
Ptychotrygoncf. P. sp.Partial tooth (MNA V10097).[7]A sawskate.
ScapanorhynchusS. raphiodonTeeth.[7]A mitsukurinid.
SqualicoraxS. curvatusMultiple teeth.[7]An anacoracid.

Invertebrates

The Tropic Shale is known for its large invertebrate assemblage. Ammonites seem to be major contributors to the ecosystem with oysters and gastropods rounding out the ecosystem. Cold hydrocarbon seeps seem to have their own invertebrate biozone located at the bottom of the formation. Rudists and solitary corals seem to be quite rare and have not been studied due to their lack of presence in the Tropic Shale as they are recorded from other formations associated with the Western Interior Seaway.[11]

GenusSpeciesCommon Name
Callianassa?sp.Mud Shrimp
Turritella?spGastropod
Goniocylichna?spGastropod
Paleopsephaea?spGastropod
Toruatellaea?spGastropod
PreissopteraprolabiataGastropod
MytiloideshattiniBivalve
Nymphalucinacf. lineariaBivalve
Solemyid?spBivalve
Arcoid?spBivalve
InoceramuspictusBivalve
RudistidBivalve
PycnodontenewberryiOyster
PrionocyclushyattiAmmonite
CollignonicraspraecoxAmmonite
CollignonicraswoollgariAmmonite
MammitesnodosoidesAmmonite
VascocerasbirchbyiAmmonite
PseudaspidocerasflexuosumAmmonite
WatinocerasdevonenseAmmonite
NigericerasscottiAmmonite
NeocardiocerasjuddiiAmmonite
BurrocerasclydenseAmmonite
EuomphalocerasseptemseriatumAmmonite
VascocerasdiartianumAmmonite
SciponocerasgracileAmmonite

Paleobotany

Limited occurrences of petrified wood have been reported in the Tropic Shale. These are interpreted predominately as drift wood that settled to the bottom of the inland seaway.[12]

Paleoecology

During the late Cretaceous the Western Interior Seaway was occupied by a sea that is regressing by the Turonian. There was a brief transgression as the estuary like Dakota Formation was replaced by deeper marine shelf deposits. This transgression/regression (named the Greenhorn) cycle lasted about four million years and correlates to an oceanic anoxic event. Evidence of the change is characterized by massive deposits of calcium carbonate in the marine mudstones that can be seen in the upper third of the Tropic Shale when calcium carbonate is absent.

During the late Cretaceous widespread conditions of oceanic anoxia occurred across the Cenomanian–Turonian (C-T) stage boundary between about 94.2 and 93.5 million years ago (Oceanic Anoxic Event II, OAE II).[12] This Cenomanian–Turonian Boundary Event is reflected by one of the most extreme carbon cycle perturbations in Earth's history. Studies have been done on the marine reptiles to determine the impact of OAE II on the biodiversity of the group in the Western Interior Seaway. Results from that study seem to suggest that at least locally the OAE II had little to no effect on marine reptile diversity.[13]

Cold hydrocarbon seep bioherms in the lower portion of the Tropic Shale during the Cenomanian give glimpses of different ecosystems to the marine shelf deposits. These bioherms tend to be around one meter tall and up to three meters wide with large concentrations of invertebrates surrounding the seeps.

References

  • Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd, Berkeley: University of California Press. 861 pp. ISBN 0-520-24209-2.