Usili Formation

The Usili Formation is a Late Permian geologic formation in Tanzania. It preserves fossils of many terrestrial vertebrates from the Permian, including temnospondyls, pareiasaurs, therapsids and the archosauromorph Aenigmastropheus.[1][2]

Usili Formation
Stratigraphic range: Lopingian
~259–252 Ma
TypeGeological formation
Unit ofSongea Group
UnderliesManda Formation
OverliesRuhuhu Formation
Thickness260 m (850 ft)
Lithology
PrimarySandstone, conglomerate
OtherSiltstone, mudstone
Location
Coordinates10°18′S 35°06′E / 10.3°S 35.1°E / -10.3; 35.1
Approximate paleocoordinates55°06′S 15°12′E / 55.1°S 15.2°E / -55.1; 15.2
RegionRuvuma Region
Country Tanzania
ExtentRuhuhu Basin
Type section
Named forUsili Mountain
Named byStockley
Year defined1932
Usili Formation is located in Tanzania
Usili Formation
Usili Formation (Tanzania)

History of study

Animals from locality B35 of the Usili Formation

One of the first to study rocks of the Usili Formation was British geologist G. M. Stockley. In 1932, Stockley explored the geology of the Ruhuhu Basin in Tanzania. He called a series of layers dating from the Late Carboniferous to the Middle Triassic of the Songea Series and divided it into eight units labelled K1-K8. Stockley was also the first to describe fossils from these rocks, naming an older layer the "Lower Bone Bed" and a younger layer the "Upper Bone Bed".[3]

In 1957, paleontologist Alan J. Charig described many more fossils from the upper bone beds in his Ph.D. thesis for the University of Cambridge.[4][5] Subsequently, Stockley's units were renamed, Charig (1963) calling unit K6 the Kawinga Formation, K7 the Kingori Sandstones, and K8 the Manda Formation. Fossils were identified in many strata, invalidating Stockley's division into two distinct bone beds. Since Charig's description, the Kawinga Formation has been renamed the Usili Formation, the Kingori Sandstones have become the Kingori Sandstone Member of the Manda Formation, and Charig's original Manda Formation has become a subunit of the formation called the Lifua Member.[3] Six formations and one informal unit are currently recognized in the Songea Group (Ruhuhu basin) rocks range in age from Pennsylvanian to Anisian, including the Idusi (K1), Mchuchuma (K2), Mbuyura (K3), Mhukuru (K4), Ruhuhu (K5), and Usili (K6) formations and the informal Manda Beds, which include the Kingori Sandstone (K7) and Lifua Member (K8).[6]

Recent studies have described the Usili Formation as a 260 metres (850 ft) thick fluvio-lacustrine succession made up of a lowermost conglomeratic interval that is approximately 5 meters thick, grading up into a trough cross-bedded, coarse-grained, sandstone-dominated interval that is 25 to 40 metres (82 to 131 ft) thick, overlain by massive nodular siltstone and laminated mudstone beds with minor ribbon sandstones forming the bulk of the succession. Since Parrington (1956), the Usili Formation became widely recognized as a Late Permian formation that correlates with the Teekloof and Balfour formations of South Africa, as well as with the Zambian Upper Madumabisa Mudstone (Cistecephalus AZ). Comparison of Usili tetrapods with those of the lower Beaufort Group has suggested a broad biostratigraphic correlation with the Cistecephalus, Dicynodon, and Tropidostoma assemblage zones. Sidor et al. (2010) recognized only one undivided tetrapod faunal assemblage in the Usili Formation, which includes Aenigmastropheus, temnospondyls, pareiasaurs, gorgonopsians, therocephalians, cynodonts, and dicynodonts, whose remains were collected from various localities. This suggests that several therapsid genera have unequal stratigraphic ranges and temporal durations in the Ruhuhu and Karoo basins.[2][6]

Sidor et al. (2010) and Sidor et al. (2013) noted that it is probable that the Chiweta Beds of Malawi and the Usili Formation of Tanzania represent the same rock unit, separated only by political boundaries and geologic faulting (being located on either side of Lake Nyasa). Except for the burnetiid MAL 240, which is unique to the Chiweta Beds, the Usili Formation hosts identical genera, including Aelurognathus, Dicynodontoides, Rhachiocephalus, Endothiodon cf. E. bathystoma, Oudenodon baini, Gorgonops? dixeyi and an indeterminate tusked dicynodont (SAM-PK-7862, SAM-PK-7863).[1][6]

Paleobiota

Tetrapods

Color key
TaxonReclassified taxonTaxon falsely reported as presentDubious taxon or junior synonymIchnotaxonOotaxonMorphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.

Temnospondyls

TaxonSpeciesLocalityMaterialNotesImages
PeltobatrachusP. pustulatusA stereospondyl, endemic to this formation.

Parareptiles

TaxonSpeciesLocalityMaterialNotesImages
AnthodonA. serrariusA pareiasaur. Originally named Anthodon minisculus, it was considered a junior synonym of A. serrarius by Lee (1997).
PareiasaurusP. serridensA pareiasaur.
Unidentified ParareptiliaIndeterminateGPIT K72, six or seven dorsal vertebrae with articulated osteodermsA pareiasaur originally described by von Huene (1944), endemic to this formation.

Eureptiles

TaxonSpeciesLocalityMaterialNotesImages
AenigmastropheusA. parringtoniB35UMZC T836, a partial postcranial skeleton including five posterior cervical and anterior dorsal vertebrae, the distal half of the right humerus, a fragment of probable left humeral shaft, the proximal end of the right ulna, and three indeterminate fragments of bone, one of which may represent a partial radius.A protorosaurid archosauromorph, endemic to this formation.

Therapsids

Anomodonts
TaxonSpeciesLocalityMaterialNotesImages
CompsodonC. helmoedi[7]L35, Z04A highly damaged mandible as well as articulated craniodental remains (skull and mandible)First preservation of a mandible for this taxon.
DaptocephalusD .leonicepsA dicynodontoid dicynodont, previously considered to be a species of Dicynodon, known only from South Africa.
D. hueneiB2 (Kingori)SAM-PK-10630, fragmentary skull and postcrania; 7 additional skullsA dicynodontoid dicynodont, the holotype was formerly assigned as a species of Dicynodon.
DicynodonDicynodon lacerticepsA dicynodontoid dicynodont, known only from South Africa.
Dicynodon angielczykiUMZC T1089, a complete skull; 6 additional partial to complete skulls and some possible postcraniaA species named for specimens of Dicynodon formerly assigned to Daptocephalus huenei.[8]
DicynodonD. robertsiOriginally considered to be a species of Dicynodon, but it is a junior synonym of Oudenodon bainii.
"Dicynodon" tealeiB32SAM-PK-10631, fragmentary skull roofAn indeterminate dicynodont, a nomen dubium.
DicynodontoidesD. nowackiKingoriGPIT/RE/7174, a nearly complete skull; other skulls and skeletonsA kingoriid dicynodont, previously considered to be a species of Dicynodon.
EndothiodonE. cf. bathystomaBasal dicynodont, endothiodontid.
E. sp. nov.A new, yet unnamed species.
E. uniseriesBasal dicynodont, endothiodontid. Originally placed in its own genus Esoterodon.
EuptychognathusE. bathyrhynchusKingoriGPIT/RE/7104 (UT K 19), well preserved partial skullBasal lystrosaurid dicynodont, previously considered to be a species of Dicynodon.
GeikiaG. locusticepsGPIT K87/UT von HUENE 1942 Abb.3, juvenile partial skull and dentary; GPIT K114, skull and dentaryA geikiine cryptodont, previously considered to be a species of Dicynodon.
KatumbiaK. parringtoniB19 (Kingori); B4 (Katumbi); Usili-BergesGPIT K120/UT Huene 1942 S.155, fragmentary skull; UMZC T761, UMZC T791, incomplete skulls; A dentaryBasal dicynodontoid, endemic to this formation.
KawingasaurusK. fossilisKingoriUT K 52, skull and dentary; UT K 56, skull; UT K 55, 5 skulls and postcraniaA cistecephalid dicynodont, endemic to this formation.
OudenodonO. bainiiMany skullsBasal oudenodontid cryptodont.
PachytegosP. stockleyiB32SAM 10639, SAM 10642, fragmentary skull elementsBasal dicynodont, endothiodontid, endemic to this formation.
PristerodonP. mackayiNMT RB38Basal dicynodont, eumantellid. Previous reports by King (1988, 1992), King and Rubidge (1993), and Gay and Cruickshank (1999) were based on the holotype specimen of Katumbia parringtoni. The first diagnostic specimen of Pristerodon mackayi from this formation, NMT RB38, was discovered in 2008.
RhachiocephalusR. behemothGPIT K 15, nearly complete skull; GPIT K 15B, fragmentary skullA rhachiocephalid cryptodont.
R. magnusMany specimensA rhachiocephalid cryptodont.
Unnamed AnomodontUnidentifiedNMT RB22, a partial maxilla of an adult. NMT RB156, a nearly complete skull, mandible, and associated postcrania of a subadult.A new genus and species of a cryptodontian dicynodont. Endemic to this formation.
Biarmosuchians
TaxonLocalityMaterialNotesImages
Burnetiidae indet.NMT RB4, partial isolated skull roof; NMT RB36, fragmentary right dorsal margin of the orbitA burnetiid most closely related to Burnetia mirabilis from the Dicynodon AZ of South Africa. Too fragmentary to be assigned to a new taxon, its morphology is unique among Cistecephalus AZ taxa.
Cynodonts
TaxonSpeciesLocalityMaterialNotesImages
ProcynosuchusP. delaharpeaeIGP K 92, fragmentary skullA procynosuchid
Therocephalians
TaxonSpeciesLocalityMaterialNotesImages
SilphictidoidesS. ruhuhuensisKingoriK 70, nearly complete skull and dentary; K 125, nearly complete skull, dentary and right humerusA baurioid, endemic to this formation.
TheriognathusT. micropsKingoriK 107 and K 84, two fragmentary skullsA whaitsiid
Gorgonopsians
TaxonSpeciesLocalityMaterialNotesImages
CyonosaurusC. broomianusA gorgonopsian
DinogorgonD. rubidgeiKingoriIGP K 16, nearly complete skull and dentaryA gorgonopsid, endemic to this formation.
"Dixeya""Dixeya" nasutaIGP K 52, nearly complete skull; IGP K 96, fragmentary skull; 6 more skullsA gorgonopsid, informally given the nomen nudum "Njalila" by Gebauer (2007). Endemic to this formation.
GorgonopsG. sp.A gorgonopsid
InostranceviaI. sp.NMT RB38, an isolated left premaxilla[9]A gorgonopsid
LycaenopsL. sp.A gorgonopsid
RubidgeaR. atroxIGP K 46, fragmentary skullA gorgonopsid, formally named Broomicephalus, endemic to this formation.
RuhuhucerberusR. haughtoniKatumbi, B4MZC T891, nearly complete skullA gorgonopsid, endemic to this formation.
SauroctonusS. parringtoniUsili-BergesIGP U 28, complete skull and dentary and fragmentary skeletonA gorgonopsid, endemic to this formation.
ScylacopsS. capensisKingori, B19MZC T885/FRP 93, skull and cervical vertebraeA gorgonopsid
SycosaurusS. nowakiKingoriIGP K 47, nearly complete skullA gorgonopsid, endemic to this formation.

References