Weinstein–Aronszajn identity

In mathematics, the Weinstein–Aronszajn identity states that if and are matrices of size m × n and n × m respectively (either or both of which may be infinite) then,provided (and hence, also ) is of trace class,

where is the k × k identity matrix.

It is closely related to the matrix determinant lemma and its generalization. It is the determinant analogue of the Woodbury matrix identity for matrix inverses.

Proof

The identity may be proved as follows.[1] Let be a matrix consisting of the four blocks , , and :

Because Im is invertible, the formula for the determinant of a block matrix gives

Because In is invertible, the formula for the determinant of a block matrix gives

Thus

Substituting for then gives the Weinstein–Aronszajn identity.

Applications

Let . The identity can be used to show the somewhat more general statement that

It follows that the non-zero eigenvalues of and are the same.

This identity is useful in developing a Bayes estimator for multivariate Gaussian distributions.

The identity also finds applications in random matrix theory by relating determinants of large matrices to determinants of smaller ones.[2]

References


🔥 Top keywords: Main PageSpecial:SearchWikipedia:Featured picturesYasukeHarrison ButkerRobert FicoBridgertonCleopatraDeaths in 2024Joyce VincentXXXTentacionHank AdamsIt Ends with UsYouTubeNew Caledonia2024 Indian general electionHeeramandiDarren DutchyshenSlovakiaKingdom of the Planet of the ApesAttempted assassination of Robert FicoLawrence WongBaby ReindeerXXX: Return of Xander CageThelma HoustonFuriosa: A Mad Max SagaMegalopolis (film)Richard GaddKepler's SupernovaWicked (musical)Sunil ChhetriXXX (2002 film)Ashley MadisonAnya Taylor-JoyPlanet of the ApesNava MauYoung SheldonPortal:Current eventsX-Men '97