Équation de Sackur-Tetrode

L'équation de Sackur-Tetrode, établie en 1912[1] par les physiciens Otto Sackur[2] et Hugo Tetrode[3],[4], donne l'entropie d'un gaz parfait monoatomique, non-dégénéré, non-relativiste.

Soit la longueur d'onde thermique de de Broglie : , et le volume correspondant.

Alors, l'entropie S = S(U,V,N) du gaz (défini par son volume V, son énergie interne U et son nombre de particules N) vaut :

Courbes entropie-température des gaz parfaits monoatomiques classiques et quantiques (gaz de Fermi, gaz de Bose (en)) en trois dimensions. Bien qu'elles soient en bon accord à température élevée, elles divergent à basse température où l'entropie classique (équation de Sackur-Tetrode) commence à prendre des valeurs négatives.

soit en développant :

.

Les expressions ci-dessus supposent que le gaz est dans le régime classique et est décrit par la statistique de Maxwell-Boltzmann (avec le "décompte correct de Boltzmann"). D'après la définition de la longueur d'onde thermique, cela signifie que l'équation de Sackur-Tetrode est valable uniquement quand :

L'entropie prédite par l'équation de Sackur-Tetrode tend vers moins l'infini quand la température tend vers zéro.

En chimie, on préfère parfois retenir plutôt l'enthalpie libre G = U + NkT -TS = -NkT. Ln P/P(T) avec P(T) = kT/Vo :

G =-RT.LnP + cste(T) est le fondement de la loi d'action de masse :

on obtient ainsi les ordres de grandeur des constantes d'équilibre Kp(T) des réactions.

Constante de Sackur-Tetrode

La constante de Sackur–Tetrode, écrite S0/R, est égale à S/kBN évaluée à la température de T = 1 kelvin, à la pression standard (100 kPa ou 101,325 kPa, à préciser), pour une mole d'un gaz idéal composé de particules de masse égale à l'unité de masse atomique unifiée (mu = 1,66053906660(50)×10−27 kg). Sa valeur recommandée par CODATA 2018 est :

S0/R = −1,151 707 537 06 ± (45) pour po = 100 kPa[5]
S0/R = −1,164 870 523 58 ± (45) pour po = 101,325 kPa[6].

Gaz rares

En chimie, on donne l'entropie molaire standard dans les conditions standard (25 °C, P = 1 × 105 Pa).

Le calcul pour m = 40 u donne 154,8 J/K/mol

Les valeurs de l'entropie molaire standard S° (en J K-1 mol-1) données par CODATA sont :

  • Hélium : M = 4,002602 u - S° = 126,153(2) ;
  • Néon : M = 20,1797 u - S° = 146,328(3) ;
  • Argon : M = 39,948 u - S° = 154,846(3) ;
  • Krypton : M = 83,80 u - S° = 164,085(3) ;
  • Xénon : M = 131,29 u - S° = 169,685(3) ;
  • Radon : M = 222 u - S° = 176,23.

On pourra vérifier que les données s'accordent pour donner :S° = S°(M=1) +3/2 R.Ln M

avec une assez bonne corrélation à condition de modifier légèrement pour l'hélium la correction de de Boer ; S°(M=1) est même négative, ce qui laisse parfois perplexes certains[Quoi ?], inattentifs à la condition de non-dégénérescence.

En comptant en bit[Quoi ?]/molécule, on retient que pour l'Argon,S° =~ 27 bits/molécule pour M = 40 : évidemment il faut S° assez grand, sinon la dégénérescence quantique doit être évaluée.

Références

Voir aussi

Articles connexes

🔥 Top keywords: Wikipédia:Accueil principalCookie (informatique)Nouvelle-CalédonieSpécial:RechercheJudith GodrècheLes Douze Coups de midiGreta GerwigLa Chronique des BridgertonJean-Michel JarreFrancis Ford CoppolaYasukeN'Golo KantéÉmilie DequenneMaurice Barthélemy (acteur)Mohamed AmraKanakZaho de SagazanChatGPTAudrey FleurotMegalopolis (film)Joséphine JapyRobert FicoFichier:Cleopatra poster.jpgSlimane (chanteur)HPI (série télévisée)La Planète des singes (franchise)Kylian MbappéWillem DafoeAnya Taylor-JoySondages sur les élections européennes de 2024Prise d'otages d'OuvéaFrançois CivilConjecture de GoldbachMeryl StreepChiara MastroianniMarcello MastroianniCarlos TavaresFranceJordan Bardella