Mission de retour d'échantillons

Type de mission spatiale

Une mission de retour d'échantillons est une mission spatiale dont l'objectif est de ramener sur Terre à des fins d'analyses des échantillons d'un autre corps céleste — planète, comète, astéroïde — ou des particules interplanétaires ou interstellaires. Ce type de mission peut être réalisé par un robot (sonde spatiale) ou dans le cadre d'une mission avec équipage. Comparé à une étude réalisée sur place par les instruments d'un robot comme le rover martien Curiosity, le retour d'un échantillon de sol sur Terre permet d'effectuer des analyses avec une précision beaucoup plus importante, de manipuler l'échantillon et de modifier les conditions expérimentales au fur et à mesure des progrès de la technologie et de la connaissance.

Vue d'artiste du décollage depuis la surface de Mars du lanceur ramenant des échantillons martiens.

Plusieurs missions de retour d'échantillons ont été menées à bien. Elles ont permis de ramener sur Terre des roches lunaires (missions spatiales avec équipage du programme Apollo, sondes spatiales du programme Luna, Chang'e 5), des échantillons du vent solaire (mission Genesis), de la queue d'une comète (Stardust) et d'un astéroïde (Hayabusa, Hayabusa 2). Plusieurs missions à destination de la Lune et d'astéroïdes sont en cours ou programmées dans la deuxième moitié de la décennie 2010 : OSIRIS-REx, Martian Moons Exploration, Mission de retour d'échantillons martiens, Zheng He, etc.. . Toutes ces missions comportent des difficultés : il faut selon la cible capturer des particules circulant à plusieurs km/s, réaliser un atterrissage automatique sur un corps pratiquement dépourvu de gravité ou au contraire pouvoir atterrir et redécoller depuis un puits de gravité important, mettre en œuvre un système de prélèvement fonctionnant dans un champ de gravité faible, enchainer des opérations complexes de manière automatique à cause de la distance qui ne permet à un opérateur de télécommander celles-ci, disposer d'un système de stockage sans contaminants pouvant préserver les caractéristiques des échantillons et dans tous les cas effectuer une rentrée dans l'atmosphère terrestre à grande vitesse et avec une grande précision. Le retour sur Terre d'échantillons martiens qui constitue en 2014 l'un des objectifs les plus importants pour l'étude du Système solaire, n'a toujours pas été concrétisé pour des raisons à la fois financières et technologiques.

Contexte

L'étude du système solaire constitue un objectif scientifique majeur. Il s'agit de comprendre comment notre système solaire s'est formé et d'en extrapoler des informations sur la structure de notre univers. Elle peut également nous fournir des indices précieux sur le processus d'apparition de la vie sur Terre et sur l'évolution future de notre planète par exemple en permettant de préciser les mécanismes d'évolution du climat de la Terre. Enfin cette étude pourrait également déboucher sur la découverte de nouvelles formes de vie, qui donnerait un éclairage complètement nouveau dans le domaine de la biologie.

Jusqu'au début de l'exploration spatiale du système solaire (1958), nos connaissances sur les différents corps du système solaire reposent sur les observations effectuées à l'aide des télescopes terrestres et sur les études des météorites collectés à la surface de la Terre, fragments des corps célestes (comètes, astéroïdes, planètes) expulsés dans l'espace par différents types d'événements (débris d'impact d'une météorite sur un corps de plus grande taille, volcanisme, destruction du corps d'origine à la suite d'un impact, éjection depuis un corps céleste en rotation à gravité faible, composant de la queue d'une comète, débris d'une comète broyée par le champ de gravité du Soleil, ....). L'information obtenue est fragmentaire même si les débuts de la spectroscopie permettent de déterminer de manière partielle et grossière les principaux éléments chimiques présents à la surface de ces corps ou dans leur atmosphère. Les objets éloignés ou de petite taille sont hors de portée des télescopes les plus puissants tout comme la face cachée de la Lune.

Les premières sondes spatiales, qui ne font que survoler la Lune, Mars et Vénus, effectuent d'emblée une moisson de découvertes : image de la face cachée de la Lune montrant une dysmétrie étonnante, stérilité de Mars, enfer vénusien. L'amélioration des technologies spatiales permet de placer les premières sondes spatiales en orbite autour de la Lune, de Mars et de Vénus puis de lancer des sondes spatiales vers des destinations plus lointaines (planètes externes) ou plus difficiles d'accès (Mercure). Ces sondes spatiales emportent des caméras, des spectromètres observant dans différentes longueurs d'onde et d'autres instruments qui permettent d'obtenir à distance des informations sur la topographie et la structure (densité, répartition de la masse) de ces corps, la composition élémentaire, isotopique et moléculaire de leur surface et de leur atmosphère. Ces sondes spatiales découvrent une grande diversité de corps célestes : océans souterrains d'Europe et de Ganymède, chimie complexe de Titan, volcanisme de Ioetc. Les engins spatiaux robotisés se raffinent et se posent à la surface de la Lune (programme Surveyor) puis de Mars (programme Viking, Mars 3) et de Vénus (programme Venera), permettant une étude in situ de la surface de ces corps. Les atterrisseurs Viking sont les premières sondes spatiales qui tentent une étude poussée d'échantillons du sol martien dans le but de détecter la présence d'organismes vivants mais l'instrument utilisé ne parvient pas à donner des informations exploitables. Les premiers engins se déplaçant à la surface sont les Lunakhod soviétiques au début des années 1970. Elles sont suivies des deux Mars Exploration Rover (2004) mais surtout de Mars Science Laboratory (2011).

Apports d'une mission de retour d'échantillons

Une mission de retour d'échantillons permet de répondre à de nombreux besoins scientifiques qui ne peuvent être pris en charge par une étude effectuée sur place[1] :

  • les capacités limitées d'une sonde spatiale (masse des instruments, énergie disponible...) ne lui permettent d'emporter qu'un nombre restreint d'instruments de taille réduite, conçus pour une stratégie d'observation précise et dotés d'une résolution relativement faible ;
  • en disposant d'échantillons sur Terre, on peut effectuer de nouvelles investigations pour bénéficier des progrès instrumentaux. Depuis que les échantillons du sol lunaire ont été ramenés dans le cadre du programme Apollo, des progrès considérables ont été faits dans la datation par l'analyse des isotopes ce qui permit de préciser l'âge de la Lune, comment et quand la croûte lunaire s'est formée, comment la Lune est liée au processus de formation de la Terre et quelle a été la durée de formation des planètes.
  • de nouvelles théories scientifiques dans le domaine de la planétologie peuvent être testées en examinant les échantillons disponibles.

Enjeux et objectifs

Aspects techniques

Risques de contamination terrestre

Historique

Liste des missions de retour d'échantillon

Missions passées ou en cours

Date de lancementMissionPays / agence spatialeType échantillonMode de prélèvementÉchantillon ramenéDate retour sur TerreStatut
Luna 15BUnion soviétiqueRégolithe lunaireAtterrisseur muni d'une pelleÉchec (au lancement)
Luna 15Union soviétiqueRégolithe lunaireAtterrisseur muni d'une pelleÉchec (à l'atterrissage sur la Lune)
Apollo 11NASARoche lunaire / régolitheCollecte par l'équipage21,55 kgSuccès
Cosmos 300 (en)Union soviétiqueRégolithe lunaireAtterrisseur muni d'une pelleÉchec (bloqué en orbite terrestre)
Cosmos 305 (en)Union soviétiqueRégolithe lunaireAtterrisseur muni d'une pelleÉchec (bloqué en orbite terrestre)
Apollo 12NASARoche lunaire / régolitheCollecte par l'équipage34,4 kgSuccès
Luna 16AUnion soviétiqueRégolithe lunaireAtterrisseur muni d'une pelleÉchec (à l'atterrissage sur la Lune)
Apollo 13NASARoche lunaire / régolitheCollecte par l'équipageÉchec (pas d'atterrissage sur la Lune mais survie de l'équipage)
Luna 16Union soviétiqueRégolithe lunaireAtterrisseur muni d'une pelle101 gSuccès
Apollo 14NASARoche lunaire / régolitheCollecte par l'équipage43 kgSuccès
Apollo 15NASARoche lunaire / régolitheCollecte par l'équipage77 kgSuccès
Luna 18Union soviétiqueRégolithe lunaireAtterrisseur muni d'une pelleÉchec (à l'atterrissage sur la Lune)
Apollo 16NASARoche lunaire / régolitheCollecte par l'équipage95,8 kgSuccès
Luna 20Union soviétiquerégolithe lunaireAtterrisseur muni d'une pelle55 gSuccès
Apollo 17NASARoche lunaire / régolitheCollecte par l'équipage110 kgSuccès
Luna 23Union soviétiqueRégolithe lunaireAtterrisseur muni d'une pelleÉchec (la foreuse est endommagée)
Luna 24AUnion soviétiqueRégolithe lunaireAtterrisseur muni d'une pelleÉchec (au lancement)
Luna 24Union soviétiquerégolithe lunaireAtterrisseur muni d'une pelle170 gSuccès
StardustNASAQueue de la comète 81P/WildCollecteur avec aérogelSuccès
GenesisNASAParticules de vent solaireCollecteurs composés de galettes en matériaux purifiésPlus d'un million de particulesSuccès partiel (capsule de retour éventrée à l'atterrissage sur Terre)
HayabusaJAXAAstéroïde (25143) ItokawaTir d'un projectile à faible distance et récupération des débris1500 grains du sol de l'astéroïdeSuccès partiel (échantillon collecté moins important que prévu)
Phobos-GruntRoscosmosSol de Phobos (lune de Mars)Atterrisseur avec bras manipulateursÉchec (au lancement)
Hayabusa 2JAXAAstéroïde (162173) RyuguTir d'un projectile à faible distance et récupération des débris5,4 gSuccès
Chang'e 5CNSARégolithe lunaireAtterrisseur muni d'une pelle et d'une foreuse1 731 gSuccès
OSIRIS-RExNASAAstéroïde (101955) Bénoujet d'azote pour soulever le régolithe122 gSuccès
(Prolongation de mission)

Missions programmées

Date lancementMissionPays / agence spatialeType échantillonModalité collecteÉchantillon ramenéDate retour sur TerreRemarque
2024Chang'e 6CNSARégolithe lunaireAtterrisseur muni d'une pelle et d'une foreuse~ 2 kg2024En développement
2026Martian Moons ExplorationJAXASol de PhobosAtterrisseur> 10 g2031En développement
2025Tianwen 2CNSAAstéroïde (469219) KamoʻoalewaAtterrisseur avec bras manipulateurs et foreuse> 200 g2026En développement
2030Tianwen 3CNSARoche et sol de MarsAtterrisseur muni d'une pelle et d'une foreuse> 500 gEn développement
2030Mars Sample ReturnNASA/ESASol martien, carottes de diverses rochesCarottages opérés par l'astromobile Perseverance2033En développement

Missions étudiées

Date de lancementMissionAgence spatialeType échantillonMode de prélèvementÉchantillon ramené (objectif)Date de retour sur TerreStatut
~2028Luna 28RoscosmosRégolite lunaireAtterrisseurkgÀ l'étude
Décennie 2020HERACLESESAAstromobile~15 kg (au moins 10 échantillons)Annulé

Notes et références

Voir aussi

Articles connexes

Liens externes

🔥 Top keywords: