ઉષ્ણતામાપક

થર્મોમીટર (ઉષ્ણતામાપક) (ગ્રીક θερμός (થર્મો ) અર્થાત "ઉષ્ણ" અને મીટર , "માપવું" પરથી) છે એવું સાધન છે કે જે વિવિધ સિદ્ધાંતોના ઉપયોગ વડે ઉષ્ણતામાન કે ઉષ્ણતામાનની માત્રાનું માપન કરે છે. થર્મોમીટરમાં બે અગત્યના ઘટકો હોય છે: ઉષ્ણતામાન સંવેદક (ઉદાહરણ તરીકે પારાવાળા થર્મોમીટર પરનો ગોળો)કે જેમાં ઉષ્ણતામાન સાથે અમુક ભૌતિક પરિવર્તન આવે,ઉપરાંત આ ભૌતિક પરિવર્તનને એક મૂલ્યમા ફેરવવા માટે અમુક માધ્યમ(ઉદાહરણ તરીકે પારાવાળા થર્મોમીટર પરના માપાંક). થર્મોમીટર્સમાં ડિજીટલ ડિસ્પ્લે કે કોમ્પ્યુટરમાં ઇનપુટ પૂરું પાડવા વિદ્યુત માધ્યમનો ઉપયોગ વધી રહ્યો છે.

નૈદાનિક પારા થર્મોમીટર
થર્મોમીટર

પ્રાથમિક અને દ્વિતીયક થર્મોમીટર્સ

થર્મોમીટર્સને મૂળભૂત ઉષ્માગતિશાસ્ત્રના નિયમો અને માત્રાઓના ભૌતિક આધાર વિશેના જ્ઞાનના સ્તર મુજબ બે ભિન્ન જૂથોમાં વિભાજીત કરી શકાય છે. પ્રાથમિક થર્મોમીટર્સ માં પદાર્થના માપન ગુણધર્મ એટલા સારી રીતે જાણીતા હતા કે કોઇ અજ્ઞાત માત્રા વિના ઉષ્ણતામાન માપી શકાતુ હતું. આ થર્મોમીટર્સના ઉદાહરણો વાયુની સ્થિતિ,વાયુમાં ધ્વનિનાવેગ પર,ઉષ્મીય ધ્વનિ(જુઓ જોહ્નસન-નીક્યુઇસ્ટ ધ્વનિ) વોલ્ટેજ કે વિદ્યુત અવરોધના પ્રવાહ પર,અને ચુંબકીય ક્ષેત્રમાં એક ચોક્કસ રેડિયોએક્ટિવ કેન્દ્ર પર ગામા કિરણો આપાત કરવાથી થતી કોણીય વિષમદેશિકતા પર આધારિત હતાં. પ્રાથમિક થર્મોમીટર્સ પ્રમાણમાં જટિલ છે.

દ્વિતીયક થર્મોમીટર્સ તેમની સાનુકૂળતાને લીધે સૌથી વ્યાપક રીતે વપરાય છે. ઉપરાંત,તે પ્રાથમિક કરતા ઘણી વાર વધુ સંવેનશીલ પણ હોય છે. દ્વિતીયક થર્મોમીટર્સમાં માપનના ગુણધર્મોની જાણકારી ઉષ્ણતામાનની સીધેસીધી ગણતરી માટે પુરતી નથી. તેમાં પ્રાથમિક થર્મોમીટર સાથે ઓછામાં ઓછા એક ઉષ્ણતામાન કે ઘણા બધા નિશ્ચિત ઉષ્ણતામાનોનાં માપ અંકિત કરવા પડે છે. આવા નિશ્ચિત બિંદુઓ, ઉદાહરણ તરીકે,ત્રય બિંદુઓ અને શ્રેષ્ઠવાહક અવસ્થાઓ,સમાન ઉષ્ણતામાને પુન:ઉત્પાદન પામે છે.

તાપમાન

જ્યારે એક એકલું થર્મોમીટર ગરમીની માત્રા માપી શકે છે,બે થર્મોમીટર્સ પરના વાંચનો સરખાવી ન શકાય,જો તે બંને એક સહમત એકમ પર મળતા આવતા હોય. આજે ઉષ્માગતિશાસ્ત્ર ઉષ્ણતામાન માપક્રમ અસ્તિત્વમાં છે. નિશ્ચિત બિંદુઓ અને પ્રક્ષેપક થર્મોમીટર્સને આધારે,આંતરરાષ્ટ્રીય સહમત ઉષ્ણતામાન માપક્રમો આશરે આટલી બારીકાઈથી બનાવવામાં આવ્યા છે. 1990ના આંતરરાષ્ટ્રીય ઉષ્ણતામાન માપક્રમ સૌથી અર્વાચીન માન્ય ઉષ્ણતામાન માપક્રમ છે. તે આશરે 0.65 K (−272.5 °C; −458.5 °F)થી 1,358 K (1,085 °C; 1,985 °F) સુધી વિસ્તરેલ છે.

પૂર્વ ઇતિહાસ

ગેલેલીયો થર્મોમીટર
19મી સદીનાં વિવિધ થર્મોમીટર્સ.

વિવિધ લેખકોએ થર્મોમીટરના આવિષ્કરનું શ્રેય કોર્નેલીયસ ડ્રેબ્બેલ,રોબર્ટ ફ્લડ,ગેલેલીયો ગેલેલી કે સેન્ટોરીઓ સેન્ટોરીઓને આપે છે. થર્મોમીટર એક આવિષ્કાર નહિં,પણ,વિકાસ હતું.

બયઝેન્ટિયમના ફિલો અને એલેક્ઝાન્ડ્રિયાના હીરો એ સિદ્ધાંત વિશે જાણતા હતા કે ચોક્કસ પદાર્થો,ખાસ કરીને વાયુ,વિસ્તરે અને સંકોચાય છે અને તે એક પ્રદર્શનમાં વર્ણવ્યું કે જેમાં હવાથી આંશિક ભરેલ એક બંધ નળીનો એક છેડો પાણીના પાત્રમાં હતો.[૧] હવાના સંકોચન અને વિસ્તરણે પાણી/હવાની સપાટીને નળીમાં આગળ વધારી.

આવી રચના પછીથી હવાની ઉષ્ણતા અને શીતળતા દર્શાવવા ઉપયોગમાં લેવાઇ કે જેમાં એક નળીમાં પાણીનું સ્તર હવાના વિસ્તરણ અને સંકોચન દ્વારા નિયંત્રિત કરાય છે. આ ઉપકરણોઘણા યુરોપિયન વૈજ્ઞાનિકો ખાસ કરીને ગેલેલીયો ગેલેલી દ્વારા 16મી અને 17મી સદીઓમાં વિક્સાવવામાં આવ્યા હતા.[૨]. પરિણામ સ્વરૂપ,ઉપકરણોને આ અસર આધારભૂત રીતે ઉત્પન્ન કરવા દર્શાવવામાં આવ્યા,અને થર્મોસ્કોપ શબ્દ અપનાવવામાં આવ્યો કારણકે તે સંવેદી ઉષ્મા ( જ્યારે ઉષ્ણતામાન ઉત્પન્ન થવું બાકી હતું ત્યારની કલ્પના)માં પરિવર્તનને પ્રતિબિંબિત કરતો હતો.[૨] તફાવત વચ્ચેનો થર્મોસ્કોપ અને થર્મોમીટર એ છે કે પછીનું માપક્રમ ધરાવે છે.[૩] ગેલેલીયોને વારંવાર થર્મોમીટરના આવિષ્કારક કહેવાય છે,પરંતુ તેમણે જે બનાવ્યું તે થર્મોસ્કોપ્સ હતા.

ગેલેલીયો એ પણ શોધ્યું કે પદાર્થો (જલીય આલ્કોહોલથી ભરેલ કાચના ગોળા) નું થોડી જુદી ઘનતાવાળા ઊંચે ચડશે અને નીચે આવશે, જે અત્યારે ગેલેલીયો થર્મોમીટર (દર્શાવેલ)નો સિદ્ધાંત છે. આજે આવા થર્મોમીટર્સ છે માપાંકિત to એ ઉષ્ણતામાન માપક્રમ.

થર્મોસ્કોપની પ્રથમ સ્પષ્ટ આકૃતિ 1617માં જ્યુસેપી બિયાન્કાની દ્વારા પ્રકાશિત કરાઇ:માપક્રમનું પ્રથમ પ્રદર્શન અને તે જ રીતે થર્મોમીટરની રચના રોબર્ટ ફ્લડ દ્વારા 1638માં કરાઇ. આ એક શિરોલંબ નળી હતી,જેની તોચ પર એક ગોળો અને છેડે નિમજ્જિત પાણી હતું. નળીમાં પાણીનું સ્તર વાયુના વિસ્તરણ અને સંકોચન દ્વારા નિયંત્રિત કરાય છે,તો તે એ છે જેને આપણે હવે વાયુ થર્મોમીટર કહીએ છીએ.[૪]

થર્મોસ્કોપ પર માપક્રમ મૂકનાર પ્રથમ વ્યક્તિ છે જુદી જુદી રીતે આશરે 1611 થી 1613માં ફ્રેન્સેસ્કો સેગ્રેડો[૫] કે સેન્ટોરીઓ સેન્ટોરીઓ કહેવાય છે.[૬].

થર્મોમીટર શબ્દ(તેના ફ્રેંચ રૂપમાં) પ્રથમ વખત 1624માં લા રેક્રીએશન મેથેમેટિક માં જે. લ્યુરેશોન દ્વારા દર્શાવાયો, જે 8 અંશના માપક્રમ વર્ણવે છે.[૭]

ઉપરના સાધનો એ ખામી ધરાવતા હતા કે તેઓ પણ બેરોમીટર્સ હતા,અર્થાત હવાના દબાણ પ્રત્યે સંવેદનશીલ. આશરે 1654માં ટસ્કેનીના ગ્રાંડ ડ્યુક,ફર્ડીનાન્ડો II દે' મેડીસી,એ આલ્કોહોલથી આંશિક ભરેલ બંધ નળીઓ,એક ગોળા અને દંડ સાથે,પ્રથમ આધુનિક-શૈલીનું થર્મોમીટર,પ્રવાહીના વિસ્તરણ,અને વાયુ દબાણથી સ્વતંત્ર છે.[૭] ઘણા અન્ય વૈજ્ઞાનિકોએ વિવિધ પ્રવાહીઓ અને થર્મોમીટરની રચનાઓ સાથે પ્રયોગો કર્યાં.

જોકે,દરેક આવિષ્કારક અને દરેક થર્મોમીટર અનન્ય હતા— કોઈ પ્રમાણભૂત માપક્રમ ન હતો. 1665માં ક્રિસ્ટીઅન હાયજન્સે પાણીના ગલન અને ઉત્કલન બિંદુઓને પ્રમાણ તરીકે ઉપયોગમાં લેવા સૂચવ્યું,અને 1694માં કાર્લો રેનાલ્ડિનીએ તેમને સાર્વત્રિક માપક્રમ પર નિશ્ચિત બિંદુઓ તરીકે લેવા નિવેદન કર્યું. 1701માં આઇઝેક ન્યૂટને બરફના ગલન બિંદુ અને શરીરના ઉષ્ણતામાન વચ્ચે 12 અંશોનો માપક્રમ માટે પ્રસ્તાવ મૂક્યો. અંતે,1724માં ડેનિઅલ ગેબ્રિઅલ ફેરનહીટે એવો ઉષ્ણતામાન માપક્રમ જે હવે (થોડુ સમાયોજિત છે) તેનુ નામ ધારણ કરે છે. તે આ કરી શક્યો કારણકે તેણે,પહેલી વખત એવો પારો વાપરીને થર્મોમીટર્સ બનાવ્યા હતા(જે ઉચ્ચ વિસ્તરણનો ગુણક ધરાવે છે),અને તેના ઉત્પાદનની ગુણવત્તા વધુ બારીક માપક્રમ અને વધુ પુન:ઉત્પાદિતતા પૂરા પાડતી હતી,જેથી તે સામાન્ય સ્વીકૃતિ પામ્યા. 1742માં એન્ડર્સ સેલ્શિયસ પાણીના ઉત્કલનબિંદુ પર શૂન્ય અને ગલન બિંદુ પર 100 સાથેનો એક માપક્રમ રજૂ કર્યો,[૮] પરંતુ માપક્રમ જે હાલ તેનુ નામ ધરાવે છે તેમાં તે ઉલ્ટાં છે.[૯]

1866માં સર થોમસ ક્લિફોર્ડ આલ્બ્ટે એક નૈદાનિક થર્મોમીટર શોધ્યું કે જેણે શરીરનુ તાપમાન વીસ વિરુદ્ધ પાંચ મિનિટમાં આપ્યું.[૧૦]1999માં એક્સર્જન કોર્પોરેશનના ડૉ. ફ્રાન્સેસ્કો પોમ્પીએ વિશ્વનું પ્રથમ કપાળની ધમનીનું થર્મોમીટર પરિચિત કર્યું,એક બિન-આક્રમક ઉષ્ણતામાન સંવેદક જે કપાળને આશરે 2 સેકન્ડમાં તપાસે છે અને ચોક્કસ વૈદ્યકીય શારીરિક ઉષ્ણતામાન આપે છે.[૧૧][૧૨]

માપાંકન

પારા-ગત કાચના થર્મોમીટર

થર્મોમીટર્સ અન્ય માપાંકિત થર્મોમીટર્સ સાથે સરખાવીને અથવા ઉષ્ણતામાન માપક્રમ પર જ્ઞાત નિશ્ચિત બિંદુઓ સામે ચકાસીને માપાંકિત થઇ શકે. આ નિશ્ચિત બિંદુઓમાં સૌથી જાણીતા શુદ્ધ પાણીનાં ગલન અને ઉત્કલન બિંદુઓ છે. (નોંધો કે પાણીનું ઉત્કલનબિંદુ દબાણ સાથે બદલે છે,તેથી તે નિયંત્રિત હોવું અનિવાર્ય છે.)

પ્રવાહીગત કાચ કે પ્રવાહીગત ધાતુ થર્મોમીટર પર માપક્રમ મૂકવાની પરંપરાગત પદ્ધતિ ત્રણ તબક્કાઓમાં હતી:

  1. સંવેદી ભાગને 1 આદર્શ વાતાવરણ (101.325 કેપીએ ; 760.0 એમએમએચજી) પર શુદ્ધ બરફ અને પાણીનાં હલાવેલા મિશ્રણમાં ડુબાડો અને જ્યારે તે ઉષ્મીય સંતુલનમાં આવે દર્શાવેલ બિંદુ અંકિત કરો.
  2. સંવેદી ભાગને સ્ટીમ બાથમાં 1 આદર્શ વાતાવરણ (101.325 કેપીએ ; 760.0 એમએમએચજી)પર ડુબાડો અને ફરીથી દર્શાવેલ બિંદુ અંકિત કરો.
  3. આ નિશાનો વચ્ચેના અંતરને સમાન વિભાગોમાં ઉપયોગમાં લીધેલ ઉષ્ણતામાન માપક્રમ મુજબ વિભાજીત કરો.

પહેલા વપરાતા અન્ય નિશ્ચિત બિંદુઓ શારીરિક ઉષ્ણતામાન (વયસ્ક તંદુરસ્ત નરનું) જે મૂળ ફેરનહીટ દ્વારા તેના ઉપરના નિશ્ચિત બિંદુ તરીકે ઉપયોગમાં લીધેલ હતું(96 °F (36 °C)12 દ્વારા વિભાજીત થઇ શકે એવી સંખ્યા)અને ન્યૂનતમ ઉષ્ણતામાન મીઠા અને બરફના મિશ્રણ દ્વારા,જે મૂળ 0 °F (−18 °C)ની વ્યાખ્યા હતી,તે હતા[૧૩] (આ શીતજનક મિશ્રણનું એક ઉદાહરણ છે). દેહનું ઉષ્ણતામાન બદલાતું હોઈ,ફેરનહીટ માપક્રમ પાછળથી 212 °F (100 °C) પર ઉકળતા પાણીનું ઉપરનું નિશ્ચિત બિંદુ વાપરવા માટે બદલવામાં આવ્યો.[૧૪]

આનુ સ્થાન 1990ના આંતરરાષ્ટ્રીય ઉષ્ણતામાન માપક્રમના વ્યાખ્યાકર્તા બિંદુઓએ લીધુ છે,પરંતુ વ્યવહારમાં તેના ત્રય બિંદુ કરતા પાણીના ગલનબિંદુનો ઉપયોગ વધુ સામાન્ય છે,બીજાને નિયંત્રિત કરવું વધુ મુશ્કેલ છે અને તેથી તે નિર્ણાયક આદર્શ માપન સુધી મર્યાદિત છે. આજકાલ ઉત્પાદકો ઘણું ખરું થર્મોસ્ટેટ(તાપનિયંત્રક) બાથ કે ઘન બ્લોકનો ઉપયોગ કરશે જ્યાં માપાંકિત થર્મોમીટરની સરખામણીમાં ઉષ્ણતામાન અચલ જળવાય છે. માપાંકિત કરવાના હોય એવા અન્ય થર્મોમીટર્સ એ જ બાથ કે બ્લોકમાં મૂકાય છે અને સંતુલનમાં લવાય છે, પછી માપક્રમ અંકિત કરાય છે,કે સાધનના માપક્રમમાં કોઇ વિચલન નોંધાય છે.[૧૫] ઘણા આધુનિક ઉપકરણોમાં માપાંકન અમુક મૂલ્ય દર્શાવતું હશે કે જે વિદ્યુત સંકેતને ઉષ્ણતામાનમાં પરિવર્તિત કરવામાં વપરાશે.

શુદ્ધતા,ચોકસાઇ,અને પુનઃઉત્પાદિતતા

વાંચન લેવા માટે એક અંશનો કેટલામો ભાગ થવો શક્ય છે તે જ થર્મોમીટરની શુદ્ધતા કે દૃઢતા છે. ઊંચા ઉષ્ણતામાનના કાર્ય માટે શક્ય વધુમા વધુ 10°સે કે તેથી વધારેની નજીકનું માપ લેવુ જ શક્ય થઇ શકે. ચિકિત્સક થર્મોમીટર્સ અને ઘણા વિદ્યુત થર્મોમીટર્સ સામાન્ય રીતે 0.1°સે.સુધીના વાંચન લઇ શકે છે.વિશિષ્ટ સાધનો એક અંશના એક હજારમાં ભાગ સુધીના વાંચનો આપી શકે છે. જોકે,આ શુદ્ધતાનો અર્થ એમ નથી કે વાંચન સાચું છે.

જે થર્મોમીટર્સમાં જ્ઞાત નિશ્ચિત બિંદુઓ (ઉદાહરણ તરીકે 0 અને 100°સે) માપાંકિત છે,તે તે બિંદુએ ચોક્કસ (અર્થાત ખરુ વાંચન આપશે). અધિકાંશ થર્મોમીટર્સ મૂલતઃ અચલ-કદ વાયુ થર્મોમીટર પરથી માપાંકિત હોય છે.[સંદર્ભ આપો] તેની વચ્ચે પ્રક્ષેપ પ્રક્રિયાનો ઉપયોગ થાય છે, સામાન્ય રીતે તે રેખીય હોય છે.[૧૫] આ થર્મોમીટરના ભિન્ન પ્રકારો વચ્ચે નિશ્ચિત બિંદુઓથી દૂર આવેલ બિંદુઓ પર અગત્યનો તફાવત આપે છે. ઉદાહરણ તરીકે કાચના થર્મોમીટરમાં પારાનું વિસ્તરણ થર્મોમીટરના પ્લેટિનમ પ્રતિરોધના પ્રતિરોધમાં પરિવર્તન કરતા થોડું ભિન્ન છે,તેથી તે 50°સેની આસપાસ થોડું અસંમત થશે.[૧૬] સાધનની અપૂર્ણતાના અન્ય કારણો હોઈ શકે,ઉદાહરણ તરીકે જો પ્રવાહીગતવાયુ થર્મોમીટરના વ્યાસમાં વાળ જેટલો પણ ફેરફાર થાય.[૧૬]

ઘણા હેતુઓ માટે પુનઃ ઉત્પાદિતતા અગત્યની છે. એ એમ છે કે,શું થર્મોમીટર એક જ ઉષ્ણતામાન માટે એક જ વાંચન આપે છે(કે બદલે છે કે એકથી વધુ થર્મોમીટર્સ એક જ વાંચન આપે છે)? પુનઃઉત્પાદિત ઉષ્ણતામાનનો અર્થ એમ છે કે વૈજ્ઞાનિક પ્રયોગોમાં સરખામણીઓ યોગ્ય છે અને ઔદ્યોગિક પ્રક્રિયાઓ સુસંગત છે. તેથી જો એક જ પ્રકારના થર્મોમીટરને એક જ રીતે માપાંકિત કરવામાં આવ્યું હોય તો અને જો નિરપેક્ષ માપક્રમની સરખામણીએ થોડું અચોક્કસ હોય તો પણ તેના વાંચનો યોગ્ય કહેવાય.

અન્યોને ઔદ્યોગિક માપદંડો મુજબ ચકાસવા માટે ઉપયોગી સંદર્ભ થર્મોમીટરનું એક ઉદાહરણ 0.1°સે(તેની શુદ્ધતા) સુધીનો ડિજીટલ ડિસ્પ્લે ધરાવતું પ્લેટિનમ પ્રતિરોધક થર્મોમીટર હશે જે રાષ્ટ્રીય માપદંડો (-18, 0, 40, 70, 100°સે) સાથે 5 બિંદુઓ પર માપાંકિત છે અને જે એક ±0.2°સે ની ચોકસાઈ માટે પ્રમાણિત છે.[૧૭]

એક British માપદંડ મુજબ,યોગ્ય રીતે માપાંકિત,ઉપયોગમાં લીધેલ અને જાળવેલ પ્રવાહીગત વાયુ થર્મોમીટર્સ 0 to 100°સેની મર્યાદામાં માપમાં ±0.01°સેની અનિશ્ચિતતા,અને આ સીમાની બહાર એક મોટી અનિશ્ચિતતા: ±0.05°સેથી 200 સુધી વધુ કે -40°સે સુધી ઓછી,±0.2°થી સે 450 સુધી વધુ કે -80°સે સુધી ઓછી.[૧૮]

ઉપયોગો

થર્મોમીટર્સના ઘણા બધા ઉપયોગો છે. થર્મોમીટર્સને ભૌતિક અસરોનાં એક વર્ગનો ઉપયોગ ઉષ્ણતામાન માપવા કરવા માટે બનાવેલ છે. ઉષ્ણતામાન સંવેદકોનો ઉપયોગ વ્યાપક પ્રકારના વૈજ્ઞાનિક અને ઇજનેરી અનુપ્રયોગોમાં ખાસ કરીને માપન પ્રણાલીઓમાં થાય છે. ઉષ્ણતામાન પ્રણાલીઓ મુખ્યત્વે વિદ્યુત કે યાંત્રિક હોય છે,તેઓ જેને નિયંત્રિત કરે છે તે પ્રણાલીથી પ્રાસંગિક રીતે અવિભાજ્ય હોય છે(જેમ કે પારા થર્મોમીટરનાં કિસ્સામાં). આલ્કોહોલ થર્મોમીટર્સ,પારરકત થર્મોમીટર્સ,પારા-ગત કાચના થર્મોમીટર્સ,રેકોર્ડિંગ થર્મોમીટર્સ,થર્મીસ્ટર્સ,અને સિક્સીઝ થર્મોમીટર્સ એવા ક્ષેત્રોની બહાર વપરાય છે જે પૃથ્વીના વાતાવરણવિવિધ સ્તરોએ રહેલ તત્વો સાથે સારી રીતે સંપર્કમાં અને પૃથ્વીના મહાસાગરોમાં હોય તે હવામાનશાસ્ત્ર અને જલવાયુશાસ્ત્રના ક્ષેત્રોમાં આવશ્યક છે. વિમાનો તેમના ઊડાણ માર્ગમાં વાતાવરણીય હિમસ્તરની પરિસ્થિતિ છે કે નહી તે નક્કી કરવા થર્મોમીટર્સ અને હાયગ્રોમીટર્સનો ઉપયોગ કરે છે,અને આ માપનોનો ઉપયોગ હવામાનનું અનુમાન કરતા મોડેલ્સને શરૂઆત આપવા માટે થાય છે. શીત હવામાનવાળા વાતાવરણમાં થર્મોમીટર્સનો ઉપયોગ સડકમાર્ગોમાં હિમસ્તરીય પરિસ્થિતિનું અસ્તિત્વ નક્કી કરવા માટે થાય છે. બંધ મકાનમાં,થર્મીસ્ટર્સનો ઉપયોગ જલવાયુ નિયંત્રક પ્રણાલીઓમાં જેમકે વાતાનુકૂલકોમાં,ફ્રીઝર્સ(શીતકો),હિટર્સ(ઉષ્મકો), રેફ્રીજરેટર્સ,અને વોટર હીટર્સ(જલ ઉષ્મકો)માં થાય છે.[૧૯] ગેલેલીયો થર્મોમીટર્સનો ઉપયોગ તેની માપન મર્યાદાને લીધે, બંધ મકાનમાં હવાનું ઉષ્ણતામાન માપવા થાય છે.

દ્વિ-ધાત્વિક દંડક થર્મોમીટર્સ, થર્મોકપલ્સ, પારરકત થર્મોમીટર્સ, અને થર્મીસ્ટર્સ રસોઈ દરમ્યાન માંસ બરાબર રંધાઈ ગયું છે તે જાણવા માટે સુલભ છે. આહારનુ ઉષ્ણતામાન અગત્યનું છે કારણકે જો તે ઉષ્ણતામાન ચાર કે વધુ કલાક માટે વચ્ચે 5 °C (41 °F) અને 57 °C (135 °F) વચ્ચેના તાપમાનવાળા પર્યાવરણના સંપર્કમાં આવે,તો જીવાણુઓની સંખ્યા વધી શકે જેનાથી આહારલક્ષી માંદગીઓ થઇ શકે.[૧૯] થર્મોમીટર્સનો ઉપયોગ કેન્ડીના ઉત્પાદનમાં થાય છે. વૈદ્યકીય થર્મોમીટર્સ જેમકે પારા-ગત કાચના થર્મોમીટર્સ,[૨૦] પારરકત થર્મોમીટર્સ,[૨૧] ટીકડી થર્મોમીટર્સ, અને પ્રવાહી સ્ફટિક થર્મોમીટર્સનો ઉપયોગ વ્યક્તિને તાવ કે હાયપોથર્મીક(તાપમાન ઓછુ થવું) છે કે નહીં તે નક્કી કરવા સ્વાસ્થ્ય જાળવણીમાં થાય છે. પ્રવાહી સ્ફટિક થર્મોમીટર્સનો ઉપયોગ પણ માછલીઘરના પાણીનું ઉષ્ણતામાન માપવા માટે થઇ શકે. અણુકેન્દ્રીય ઊર્જા સુવિધામાં ફાઇબર બ્રેગ ગ્રેટિંગ ઉષ્ણતામાન સંવેદકોનો ઉપયોગ અણુકેન્દ્રીય પીગલનની શક્યતાઓ નિવારવા માટે પરમાણુ ભઠ્ઠીના ગર્ભના ઉષ્ણતામાનોનું નિયંત્રણ કરવા થાય છે.[૨૨]

અન્ય પ્રકારો નું થર્મોમીટર્સ

  • બેકમેંન ડીફ્રન્શીયલ થર્મોમીટર
  • દ્વિ-ધાતુ યાંત્રિક થર્મોમીટર
  • કોલંબ બ્લોકેડ થર્મોમીટર
  • પ્રતિરોધક થર્મોમીટર
  • પ્રત્યાવર્તક થર્મોમીટર
  • સિલીકોન બેન્ડગેપ ઉષ્ણતામાન સંવેદક
  • ફોસ્ફર થર્મોમેટ્રી

આ પણ જુઓ

  • સ્વયંસંચાલિત વાયુમથક હવામાન સ્ટેશન
  • સમયરેખા ઉષ્ણતામાન અને દબાણ માપન પદ્ધતિ
  • ઉષ્ણતામાન પરિવર્તન
  • થર્મોજનરેટર

સંદર્ભો

સંદર્ભો

વધુ વાંચન

બાહ્ય લિંક્સ

ઢાંચો:Meteorological equipmentઢાંચો:Laboratory equipmentઢાંચો:Health care

🔥 Top keywords: