ಏಕಕಾಲಿಕ ಸ್ಥಳೀಕರಣ ಮತ್ತು ಮ್ಯಾಪಿಂಗ್

ಏಕಕಾಲಿಕ ಸ್ಥಳೀಕರಣ ಮತ್ತು ಮ್ಯಾಪಿಂಗ್ ( ಸ್ಲ್ಯಾಮ್) ಎಂಬುದು ಅಜ್ಞಾತ ಪರಿಸರದ ನಕ್ಷೆಯನ್ನು ನಿರ್ಮಿಸುವ ಅಥವಾ ನವೀಕರಿಸುವ ಕಂಪ್ಯೂಟೇಶನಲ್ ಸಮಸ್ಯೆಯಾಗಿದ್ದು, ಅದು ಏಜೆಂಟ್‌ನ ಸ್ಥಳವನ್ನು ಏಕಕಾಲದಲ್ಲಿ ಟ್ರ್ಯಾಕ್ ಮಾಡುತ್ತದೆ. ಇದು ಆರಂಭದಲ್ಲಿ ಕೋಳಿ-ಮತ್ತು-ಮೊಟ್ಟೆಯ ಸಮಸ್ಯೆಯಾಗಿ ಕಂಡುಬಂದರೂ, ಕೆಲವು ಪರಿಸರಗಳಿಗೆ ಕನಿಷ್ಠ ಅಂದಾಜು ಸಮಯದಲ್ಲಿ ಅದನ್ನು ಪರಿಹರಿಸಲು ಹಲವಾರು ಅಲ್ಗಾರಿದಮ್‌ಗಳಿವೆ . ಜನಪ್ರಿಯ ಅಂದಾಜು ಪರಿಹಾರ ವಿಧಾನಗಳಲ್ಲಿ ಕಣ ಫಿಲ್ಟರ್, ವಿಸ್ತೃತ ಕಲ್ಮನ್ ಫಿಲ್ಟರ್, ಕೋವೇರಿಯನ್ಸ್ ಛೇದಕ ಮತ್ತು ಗ್ರಾಫ್‌ಸ್ಲಾಮ್ ಸೇರಿವೆ. ಸ್ಲ್ಯಾಮ್ ಕ್ರಮಾವಳಿಗಳು (ಅಲ್ಗಾರಿದಮ್‌ಗಳು) ಕಂಪ್ಯೂಟೇಶನಲ್ ಜ್ಯಾಮಿತಿ ಮತ್ತು ಕಂಪ್ಯೂಟರ್ ದೃಷ್ಟಿಯಲ್ಲಿನ ಪರಿಕಲ್ಪನೆಗಳನ್ನು ಆಧರಿಸಿವೆ ಮತ್ತು ವರ್ಚುವಲ್ ರಿಯಾಲಿಟಿ ಅಥವಾ ವರ್ಧಿತ ರಿಯಾಲಿಟಿಗಾಗಿ ರೋಬೋಟ್ ನ್ಯಾವಿಗೇಷನ್, ರೋಬೋಟಿಕ್ ಮ್ಯಾಪಿಂಗ್ ಮತ್ತು ಓಡೋಮೆಟ್ರಿಯಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ.

೨೦೦೫ ದರ್ಪಾ ಗ್ರ್ಯಾಂಡ್ ಚಾಲೆಂಜ್ ವಿಜೇತ ಸ್ಟಾನ್ಲಿ ತನ್ನ ಸ್ವಾಯತ್ತ ಚಾಲನಾ ವ್ಯವಸ್ಥೆಯ ಭಾಗವಾಗಿ ಸ್ಲಾಮ್ ಅನ್ನು ಪ್ರದರ್ಶಿಸಿದರು.
ಸ್ಲ್ಯಾಮ್ ರೋಬೋಟ್‌ನಿಂದ ರಚಿಸಲಾದ ನಕ್ಷೆ.

ಸ್ಲ್ಯಾಮ್ ಕ್ರಮಾವಳಿಗಳು ಲಭ್ಯವಿರುವ ಸಂಪನ್ಮೂಲಗಳಿಗೆ ಅನುಗುಣವಾಗಿರುತ್ತವೆ ಮತ್ತು ಪರಿಪೂರ್ಣತೆಯ ಗುರಿಯನ್ನು ಹೊಂದಿಲ್ಲ ಆದರೆ ಕಾರ್ಯಾಚರಣೆಯ ಅನುಸರಣೆಗೆ ಗುರಿಯಾಗುತ್ತವೆ. ಸ್ವಯಂ ಚಾಲಿತ ಕಾರುಗಳು, ಮಾನವರಹಿತ ವೈಮಾನಿಕ ವಾಹನಗಳು, ಸ್ವಾಯತ್ತ ನೀರೊಳಗಿನ ವಾಹನಗಳು, ಪ್ಲಾನೆಟರಿ ರೋವರ್‌ಗಳು, ಹೊಸ ದೇಶೀಯ ರೋಬೋಟ್‌ಗಳು ಮತ್ತು ಮಾನವ ದೇಹದೊಳಗೆ ಸಹ ಪ್ರಕಟಿತ ವಿಧಾನಗಳನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಸಮಸ್ಯೆಯ ಗಣಿತದ ವಿವರಣೆ

ನಿಯಂತ್ರಣಗಳ ಸರಣಿಯನ್ನು ನೀಡಲಾಗಿದೆ ಮತ್ತು ಸಂವೇದಕ ವೀಕ್ಷಣೆಗಳು ಪ್ರತ್ಯೇಕ ಸಮಯದ ಹಂತಗಳ ಮೇಲೆ , ಸ್ಲ್ಯಾಮ್ ಸಮಸ್ಯೆಯು ಏಜೆಂಟ್‌ನ ಸ್ಥಿತಿಯ ಅಂದಾಜನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡುವುದು ಮತ್ತು ಪರಿಸರದ ನಕ್ಷೆ . ಎಲ್ಲಾ ಪ್ರಮಾಣಗಳು ಸಾಮಾನ್ಯವಾಗಿ ಸಂಭವನೀಯವಾಗಿರುತ್ತವೆ, ಆದ್ದರಿಂದ ಉದ್ದೇಶವು ಲೆಕ್ಕಾಚಾರ ಮಾಡುವುದು:

ಬೇಯ್ಸ್ ನಿಯಮವನ್ನು ಅನ್ವಯಿಸುವುದರಿಂದ ಸ್ಥಳದ ಹಿಂಭಾಗಗಳನ್ನು ಅನುಕ್ರಮವಾಗಿ ನವೀಕರಿಸಲು ಒಂದು ಚೌಕಟ್ಟನ್ನು ನೀಡುತ್ತದೆ. ನಕ್ಷೆ ಮತ್ತು ಪರಿವರ್ತನೆಯ ಕಾರ್ಯವನ್ನು ನೀಡಲಾಗಿದೆ ,

ಅಂತೆಯೇ ನಕ್ಷೆಯನ್ನು ಅನುಕ್ರಮವಾಗಿ ನವೀಕರಿಸಬಹುದು

ಅನೇಕ ನಿರ್ಣಯ ಸಮಸ್ಯೆಗಳಂತೆ, ಎರಡು ವೇರಿಯಬಲ್‌ಗಳನ್ನು ಒಟ್ಟಿಗೆ ಊಹಿಸುವ ಪರಿಹಾರಗಳನ್ನು ಸ್ಥಳೀಯ ಅತ್ಯುತ್ತಮ ಪರಿಹಾರಕ್ಕಾಗಿ, ಎರಡು ನಂಬಿಕೆಗಳ ಪರ್ಯಾಯ ನವೀಕರಣಗಳನ್ನು ನಿರೀಕ್ಷೆ-ಗರಿಷ್ಠಗೊಳಿಸುವಿಕೆಯ ಅಲ್ಗಾರಿದಮ್ ರೂಪದಲ್ಲಿ ಕಂಡುಹಿಡಿಯಬಹುದು.

ಕ್ರಮಾವಳಿಗಳು

ಮೇಲಿನ ಸಮೀಕರಣಗಳನ್ನು ಅಂದಾಜು ಮಾಡಲು ಬಳಸುವ ಅಂಕಿಅಂಶಗಳ ತಂತ್ರಗಳಲ್ಲಿ ಕಲ್ಮನ್ ಫಿಲ್ಟರ್‌ಗಳು ಮತ್ತು ಕಣ ಫಿಲ್ಟರ್‌ಗಳು ಸೇರಿವೆ. ಅವರು ರೋಬೋಟ್‌ನ ಭಂಗಿ ಮತ್ತು ನಕ್ಷೆಯ ನಿಯತಾಂಕಗಳಿಗಾಗಿ ಹಿಂಭಾಗದ ಸಂಭವನೀಯತೆಯ ವಿತರಣೆಯ ಅಂದಾಜನ್ನು ಒದಗಿಸುತ್ತಾರೆ. ಕೋವೇರಿಯನ್ಸ್ ಛೇದಕವನ್ನು ಬಳಸಿಕೊಂಡು ಮೇಲಿನ ಮಾದರಿಯನ್ನು ಸಂಪ್ರದಾಯಬದ್ಧವಾಗಿ ಅಂದಾಜು ಮಾಡುವ ವಿಧಾನಗಳು ದೊಡ್ಡ-ಪ್ರಮಾಣದ ಅನ್ವಯಗಳಿಗೆ ಅಲ್ಗಾರಿದಮಿಕ್ ಸಂಕೀರ್ಣತೆಯನ್ನು ಕಡಿಮೆ ಮಾಡಲು ಸಂಖ್ಯಾಶಾಸ್ತ್ರೀಯ ಸ್ವಾತಂತ್ರ್ಯದ ಊಹೆಗಳ ಅವಲಂಬನೆಯನ್ನು ತಪ್ಪಿಸಲು ಸಾಧ್ಯವಾಗುತ್ತದೆ. ಇತರ ಅಂದಾಜು ವಿಧಾನಗಳು ಅನಿಶ್ಚಿತತೆಯ ಸರಳ ಮಿತಿ-ಪ್ರದೇಶದ ಪ್ರಾತಿನಿಧ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸುಧಾರಿತ ಕಂಪ್ಯೂಟೇಶನಲ್ ದಕ್ಷತೆಯನ್ನು ಸಾಧಿಸುತ್ತವೆ.

ಸೆಟ್-ಸದಸ್ಯತ್ವ ತಂತ್ರಗಳು ಮುಖ್ಯವಾಗಿ ಮಧ್ಯಂತರ ನಿರ್ಬಂಧದ ಪ್ರಸರಣವನ್ನು ಆಧರಿಸಿವೆ. [೧] [೨] ಅವರು ರೋಬೋಟ್‌ನ ಭಂಗಿ ಮತ್ತು ನಕ್ಷೆಯ ಅಂದಾಜು ಅಂದಾಜುಗಳನ್ನು ಸುತ್ತುವರೆದಿರುವ ಸೆಟ್ ಅನ್ನು ಒದಗಿಸುತ್ತಾರೆ. ಬಂಡಲ್ ಹೊಂದಾಣಿಕೆ, ಮತ್ತು ಸಾಮಾನ್ಯವಾಗಿ ಗರಿಷ್ಠ ಒಂದು ಹಿಂಭಾಗದ ಅಂದಾಜು (ನಕ್ಷೆ), ಚಿತ್ರ ಡೇಟಾವನ್ನು ಬಳಸಿಕೊಂಡು ಸ್ಲ್ಯಾಮ್‌‍ಗಾಗಿ ಮತ್ತೊಂದು ಜನಪ್ರಿಯ ತಂತ್ರವಾಗಿದೆ, ಇದು ಜಂಟಿಯಾಗಿ ಭಂಗಿಗಳು ಮತ್ತು ಹೆಗ್ಗುರುತು ಸ್ಥಾನಗಳನ್ನು ಅಂದಾಜು ಮಾಡುತ್ತದೆ, ನಕ್ಷೆಯ ನಿಷ್ಠೆಯನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ ಮತ್ತು ಅವುಗಳನ್ನು ಬದಲಾಯಿಸುವ ಗೂಗಲ್‌‍ನ ಎಆರ್ ಕೋರ್ ನಂತಹ ವಾಣಿಜ್ಯೀಕೃತ ಸ್ಲ್ಯಾಮ್ ವ್ಯವಸ್ಥೆಗಳಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ. ಹಿಂದಿನ ವರ್ಧಿತ ರಿಯಾಲಿಟಿ ಯೋಜನೆ ' ಟ್ಯಾಂಗೋ ' ಸಂಪೂರ್ಣ ಹಿಂಭಾಗದ ಸಂಭವನೀಯತೆಯನ್ನು ಅಂದಾಜು ಮಾಡಲು ಪ್ರಯತ್ನಿಸುವ ಬದಲು, ಮ್ಯಾಪ್ ಅಂದಾಜುಗಾರರು ರೋಬೋಟ್ ಭಂಗಿಗಳ ಹೆಚ್ಚಿನ ವಿವರಣೆಯನ್ನು ಮತ್ತು ಸಂವೇದಕ ಡೇಟಾವನ್ನು ನೀಡಿದ ನಕ್ಷೆಯನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡುತ್ತಿದ್ದವು.

ಹೊಸ ಸ್ಲ್ಯಾಮ್ ಅಲ್ಗಾರಿದಮ್‌ಗಳು ಸಕ್ರಿಯ ಸಂಶೋಧನಾ ಕ್ಷೇತ್ರವಾಗಿ ಉಳಿದಿವೆ. [೩] ಕೆಳಗೆ ವಿವರಿಸಿದಂತೆ ನಕ್ಷೆಗಳು, ಸಂವೇದಕಗಳು ಮತ್ತು ಮಾದರಿಗಳ ಬಗೆಗಳ ಬಗೆಗಿನ ವಿಭಿನ್ನ ಅವಶ್ಯಕತೆಗಳು ಮತ್ತು ಊಹೆಗಳಿಂದ ಹೆಚ್ಚಾಗಿ ನಡೆಸಲ್ಪಡುತ್ತವೆ. ಅನೇಕ ಸ್ಲ್ಯಾಮ್ ವ್ಯವಸ್ಥೆಗಳನ್ನು ಈ ಪ್ರತಿಯೊಂದು ಅಂಶಗಳಿಂದ ಆಯ್ಕೆಗಳ ಸಂಯೋಜನೆಗಳಾಗಿ ವೀಕ್ಷಿಸಬಹುದು.

ಮ್ಯಾಪಿಂಗ್

ಟೋಪೋಲಾಜಿಕಲ್ ನಕ್ಷೆಗಳು ಜ್ಯಾಮಿತೀಯವಾಗಿ ನಿಖರವಾದ ನಕ್ಷೆಯನ್ನು ರಚಿಸುವ ಬದಲು ಪರಿಸರದ ಸಂಪರ್ಕವನ್ನು (ಅಂದರೆ, ಟೋಪೋಲಜಿ ) ಸೆರೆಹಿಡಿಯುವ ಪರಿಸರ ಪ್ರಾತಿನಿಧ್ಯದ ಒಂದು ವಿಧಾನವಾಗಿದೆ. ಮೆಟ್ರಿಕ್ ಸ್ಲ್ಯಾಮ್ ಅಲ್ಗಾರಿದಮ್‌ಗಳಲ್ಲಿ ಜಾಗತಿಕ ಸ್ಥಿರತೆಯನ್ನು ಜಾರಿಗೊಳಿಸಲು ಸ್ಥಳಶಾಸ್ತ್ರದ ಸ್ಲ್ಯಾಮ್ ವಿಧಾನಗಳನ್ನು ಬಳಸಲಾಗಿದೆ. [೪]

ಇದಕ್ಕೆ ವಿರುದ್ಧವಾಗಿ ಗ್ರಿಡ್ ನಕ್ಷೆಗಳು ಟೋಪೋಲಾಜಿಕಲ್ ಜಗತ್ತನ್ನು ಪ್ರತಿನಿಧಿಸಲು ವಿವೇಚನಾರಹಿತ ಕೋಶಗಳ ಸರಣಿಗಳನ್ನು (ಸಾಮಾನ್ಯವಾಗಿ ಚದರ ಅಥವಾ ಷಡ್ಭುಜೀಯ) ಬಳಸುತ್ತವೆ ಮತ್ತು ಯಾವ ಕೋಶಗಳನ್ನು ಆಕ್ರಮಿಸಿಕೊಂಡಿವೆ ಎಂಬುದರ ಕುರಿತು ತೀರ್ಮಾನಗಳನ್ನು ಮಾಡುತ್ತವೆ. ಸಾಮಾನ್ಯವಾಗಿ ಕೋಶಗಳು ಗಣನೆಯನ್ನು ಸರಳಗೊಳಿಸುವ ಸಲುವಾಗಿ ಸಂಖ್ಯಾಶಾಸ್ತ್ರೀಯವಾಗಿ ಸ್ವತಂತ್ರವಾಗಿರುತ್ತವೆ ಎಂದು ಊಹಿಸಲಾಗಿದೆ. ಅಂತಹ ಊಹೆಯ ಅಡಿಯಲ್ಲಿ, ಹೊಸ ನಕ್ಷೆಯ ಕೋಶಗಳು ವೀಕ್ಷಣೆಯೊಂದಿಗೆ ಸ್ಥಿರವಾಗಿದ್ದರೆ ೧ ಕ್ಕೆ ಹೊಂದಿಸಲಾಗಿದೆ ಸ್ಥಳದಲ್ಲಿ ಮತ್ತು ಅಸಮಂಜಸವಾಗಿದ್ದರೆ ೦.

ಆಧುನಿಕ ಸ್ವಯಂ ಚಾಲನಾ ಕಾರುಗಳು ಮುಂಚಿತವಾಗಿ ಸಂಗ್ರಹಿಸಲಾದ ಹೆಚ್ಚು ವಿವರವಾದ ನಕ್ಷೆಯ ಡೇಟಾವನ್ನು ವ್ಯಾಪಕವಾಗಿ ಬಳಸಿಕೊಳ್ಳುವ ಮೂಲಕ ಮ್ಯಾಪಿಂಗ್ ಸಮಸ್ಯೆಯನ್ನು ಬಹುತೇಕ ಸರಳಗೊಳಿಸುತ್ತವೆ. ಇದು ರಸ್ತೆಯಲ್ಲಿನ ಪ್ರತ್ಯೇಕ ಬಿಳಿ ರೇಖೆಯ ಭಾಗಗಳು ಮತ್ತು ಕರ್ಬ್‌ಗಳ ಸ್ಥಳಗಳನ್ನು ಗುರುತಿಸುವ ಮಟ್ಟಕ್ಕೆ ನಕ್ಷೆ ಟಿಪ್ಪಣಿಗಳನ್ನು ಒಳಗೊಂಡಿರಬಹುದು. ಗೂಗಲ್‌‌ನ ಬೀದಿ ವೀಕ್ಷಣೆಯಂತಹ ಸ್ಥಳ-ಟ್ಯಾಗ್ ಮಾಡಲಾದ ದೃಶ್ಯ ಡೇಟಾವನ್ನು ಸಹ ನಕ್ಷೆಗಳ ಭಾಗವಾಗಿ ಬಳಸಬಹುದು. ಮೂಲಭೂತವಾಗಿ ಅಂತಹ ವ್ಯವಸ್ಥೆಗಳು ಸ್ಲ್ಯಾಮ್ ಸಮಸ್ಯೆಯನ್ನು ಸರಳವಾದ ಸ್ಥಳೀಕರಣದ ಕಾರ್ಯಕ್ಕೆ ಸರಳಗೊಳಿಸುತ್ತವೆ, ಬಹುಶಃ ಚಲಿಸುವ ವಸ್ತುಗಳನ್ನು ಚಲಿಸುವ ಕಾರುಗಳು ಮತ್ತು ಜನರಂತಹ ನಕ್ಷೆಯಲ್ಲಿ ರನ್‌ಟೈಮ್‌ನಲ್ಲಿ ನವೀಕರಿಸಲು ಅವಕಾಶ ನೀಡುತ್ತದೆ.

ಸಂವೇದನೆ

ಲಿಡಾರ್ ಸ್ಲ್ಯಾಮ್ ನಿಂದ ಸಂಚಿತವಾದ ನೋಂದಾಯಿತ ಪಾಯಿಂಟ್ ಕ್ಲೌಡ್.

ಸ್ಲ್ಯಾಮ್ ಯಾವಾಗಲೂ ವಿವಿಧ ರೀತಿಯ ಸಂವೇದಕಗಳನ್ನು ಬಳಸುತ್ತದೆ ಮತ್ತು ವಿವಿಧ ಸಂವೇದಕ ಪ್ರಕಾರಗಳ ಶಕ್ತಿಗಳು ಮತ್ತು ಮಿತಿಗಳು ಹೊಸ ಅಲ್ಗಾರಿದಮ್‌ಗಳ ಪ್ರಮುಖ ಚಾಲಕವಾಗಿದೆ. [೫] ಸಂಖ್ಯಾಶಾಸ್ತ್ರೀಯ ಸ್ವಾತಂತ್ರ್ಯವು ಮೆಟ್ರಿಕ್ ಪಕ್ಷಪಾತವನ್ನು ಮತ್ತು ಮಾಪನಗಳಲ್ಲಿ ಶಬ್ದವನ್ನು ನಿಭಾಯಿಸಲು ಕಡ್ಡಾಯ ಅವಶ್ಯಕತೆಯಾಗಿದೆ. ವಿಭಿನ್ನ ರೀತಿಯ ಸಂವೇದಕಗಳು ವಿಭಿನ್ನ ಸ್ಲ್ಯಾಮ್ ಅಲ್ಗಾರಿದಮ್‌ಗಳಿಗೆ ಕಾರಣವಾಗುತ್ತವೆ. ಅದರ ಊಹೆಗಳು ಸಂವೇದಕಗಳಿಗೆ ಹೆಚ್ಚು ಸೂಕ್ತವಾಗಿವೆ. ಒಂದು ತೀವ್ರತೆಯಲ್ಲಿ, ಲೇಸರ್ ಸ್ಕ್ಯಾನ್‌ಗಳು ಅಥವಾ ದೃಶ್ಯ ವೈಶಿಷ್ಟ್ಯಗಳು ಒಂದು ಪ್ರದೇಶದೊಳಗೆ ಅನೇಕ ಬಿಂದುಗಳ ವಿವರಗಳನ್ನು ಒದಗಿಸುತ್ತವೆ, ಕೆಲವೊಮ್ಮೆ ಸ್ಲ್ಯಾಮ್ ಅನುಮಿತಿಯನ್ನು ಅನಗತ್ಯವಾಗಿ ನೀಡುತ್ತವೆ ಏಕೆಂದರೆ ಈ ಬಿಂದು ಮೋಡಗಳಲ್ಲಿನ ಆಕಾರಗಳನ್ನು ಇಮೇಜ್ ನೋಂದಣಿ ಮೂಲಕ ಪ್ರತಿ ಹಂತದಲ್ಲೂ ಸುಲಭವಾಗಿ ಮತ್ತು ನಿಸ್ಸಂದಿಗ್ಧವಾಗಿ ಜೋಡಿಸಬಹುದು. ಇದಕ್ಕೆ ವಿರುದ್ಧವಾದ ತೀವ್ರತೆಯಲ್ಲಿ, ಸ್ಪರ್ಶ ಸಂವೇದಕಗಳು ಅತ್ಯಂತ ವಿರಳವಾಗಿರುತ್ತವೆ ಏಕೆಂದರೆ ಅವುಗಳು ಏಜೆಂಟ್‌ಗೆ ಹತ್ತಿರವಿರುವ ಬಿಂದುಗಳ ಬಗ್ಗೆ ಮಾತ್ರ ಮಾಹಿತಿಯನ್ನು ಹೊಂದಿರುತ್ತವೆ. ಆದ್ದರಿಂದ ಅವು ಸಂಪೂರ್ಣವಾಗಿ ಸ್ಪರ್ಶದ ಸ್ಲ್ಯಾಮ್ ನಲ್ಲಿ ಸರಿದೂಗಿಸಲು ಬಲವಾದ ಪೂರ್ವ ಮಾದರಿಗಳ ಅಗತ್ಯವಿರುತ್ತದೆ. ಹೆಚ್ಚಿನ ಪ್ರಾಯೋಗಿಕ ಸ್ಲ್ಯಾಮ್ ಕಾರ್ಯಗಳು ಈ ದೃಶ್ಯ ಮತ್ತು ಸ್ಪರ್ಶದ ವಿಪರೀತಗಳ ನಡುವೆ ಎಲ್ಲೋ ಬೀಳುತ್ತವೆ.

ಸಂವೇದಕ ಮಾದರಿಗಳು ವಿಶಾಲವಾಗಿ ಹೆಗ್ಗುರುತು-ಆಧಾರಿತ ಮತ್ತು ಕಚ್ಚಾ-ದತ್ತಾಂಶ ವಿಧಾನಗಳಾಗಿ ವಿಭಜಿಸುತ್ತವೆ. ವೈಫೈ ಪ್ರವೇಶ ಬಿಂದುಗಳು ಅಥವಾ ರೇಡಿಯೋ ಬೀಕನ್‌ಗಳಂತಹ ಸಂವೇದಕದಿಂದ ಸ್ಥಳವನ್ನು ಅಂದಾಜು ಮಾಡಬಹುದಾದ ಪ್ರಪಂಚದಲ್ಲಿ ಲ್ಯಾಂಡ್‌ಮಾರ್ಕ್‌ಗಳು ಅನನ್ಯವಾಗಿ ಗುರುತಿಸಬಹುದಾದ ವಸ್ತುಗಳಾಗಿವೆ. ರಾ-ಡೇಟಾ ವಿಧಾನಗಳು ಹೆಗ್ಗುರುತುಗಳನ್ನು ಗುರುತಿಸಬಹುದು ಮತ್ತು ಬದಲಿಗೆ ಮಾದರಿ ಎಂದು ಯಾವುದೇ ಊಹೆಯನ್ನು ಮಾಡುವುದಿಲ್ಲ ನೇರವಾಗಿ ಸ್ಥಳದ ಕಾರ್ಯವಾಗಿ.

ಆಪ್ಟಿಕಲ್ ಸಂವೇದಕಗಳು ಒಂದು ಆಯಾಮದ (ಸಿಂಗಲ್ ಬೀಮ್) ಅಥವಾ ೨ಡಿ- (ಸ್ವೀಪಿಂಗ್) ಲೇಸರ್ ರೇಂಜ್‌ಫೈಂಡರ್‌ಗಳು, ೩ಡಿ ಹೈ ಡೆಫಿನಿಷನ್ ಲಿಡಾರ್, ೩ಡಿ ಫ್ಲ್ಯಾಶ್ ಲಿಡಾರ್, ೨ಡಿ ಅಥವಾ ೩ಡಿ ಸೋನಾರ್ ಸಂವೇದಕಗಳು ಮತ್ತು ಒಂದು ಅಥವಾ ಹೆಚ್ಚಿನ ೨ಡಿ ಕ್ಯಾಮೆರಾಗಳಾಗಿರಬಹುದು . [೬] ೨೦೦೫ ರಿಂದ, ವಿಸ್ಲ್ಯಾಮ್ (ದೃಶ್ಯ ಸ್ಲ್ಯಾಮ್) ನಲ್ಲಿ ಪ್ರಾಥಮಿಕವಾಗಿ ದೃಶ್ಯ (ಕ್ಯಾಮೆರಾ) ಸಂವೇದಕಗಳನ್ನು ಬಳಸಿಕೊಂಡು ತೀವ್ರವಾದ ಸಂಶೋಧನೆಗಳು ನಡೆದಿವೆ, ಏಕೆಂದರೆ ಮೊಬೈಲ್ ಸಾಧನಗಳಲ್ಲಿ ಕ್ಯಾಮರಾಗಳ ಸರ್ವತ್ರ ಹೆಚ್ಚುತ್ತಿರುವ ಕಾರಣ. ವಿಷುಯಲ್ ಮತ್ತು ಲಿಡಾರ್ ಸಂವೇದಕಗಳು ಅನೇಕ ಸಂದರ್ಭಗಳಲ್ಲಿ ಹೆಗ್ಗುರುತನ್ನು ಹೊರತೆಗೆಯಲು ಅನುಮತಿಸುವಷ್ಟು ಮಾಹಿತಿಯುಕ್ತವಾಗಿವೆ. ಸ್ಲ್ಯಾಮ್‌‌‍ನ ಇತರ ಇತ್ತೀಚಿನ ರೂಪಗಳು ಸ್ಪರ್ಶ ಸ್ಲ್ಯಾಮ್ (ಸ್ಥಳೀಯ ಸ್ಪರ್ಶದಿಂದ ಮಾತ್ರ ಗ್ರಹಿಸುವುದು), ರಾಡಾರ್ ಸ್ಲ್ಯಾಮ್, ಅಕೌಸ್ಟಿಕ್ ಸ್ಲ್ಯಾಮ್, [೭] ಮತ್ತು ವೈಫೈ-ಸ್ಲ್ಯಾಮ್ (ಹತ್ತಿರದ ವೈಫೈ ಪ್ರವೇಶ ಬಿಂದುಗಳ ಸಾಮರ್ಥ್ಯದಿಂದ ಗ್ರಹಿಸುವುದು) ಸೇರಿವೆ. [೮] ಇತ್ತೀಚಿನ ವಿಧಾನಗಳು ಅರೆ-ಆಪ್ಟಿಕಲ್ ವೈರ್‌ಲೆಸ್ ಶ್ರೇಣಿಯನ್ನು ಮಲ್ಟಿ-ಲೇಟರೇಶನ್ ( ಆರ್‌ಟಿಎಲ್‌ಎಸ್ ) ಅಥವಾ ಮಲ್ಟಿ -ಆಂಗುಲೇಷನ್‌ನೊಂದಿಗೆ ಎಸ್‌ಎಲ್‌ಎಎಂ ಜೊತೆಯಲ್ಲಿ ಅನಿಯಮಿತ ವೈರ್‌ಲೆಸ್ ಕ್ರಮಗಳಿಗೆ ಗೌರವವಾಗಿ ಅನ್ವಯಿಸುತ್ತವೆ. ಮಾನವ ಪಾದಚಾರಿಗಳಿಗೆ ಒಂದು ರೀತಿಯ ಸ್ಲ್ಯಾಮ್ ಮುಖ್ಯ ಸಂವೇದಕವಾಗಿ ಶೂ ಮೌಂಟೆಡ್ ಜಡತ್ವ ಮಾಪನ ಘಟಕವನ್ನು ಬಳಸುತ್ತದೆ ಮತ್ತು ಒಳಾಂಗಣ ಸ್ಥಾನೀಕರಣ ವ್ಯವಸ್ಥೆಯಿಂದ ಕಟ್ಟಡಗಳ ನೆಲದ ಯೋಜನೆಗಳನ್ನು ಸ್ವಯಂಚಾಲಿತವಾಗಿ ನಿರ್ಮಿಸಲು ಪಾದಚಾರಿಗಳು ಗೋಡೆಗಳನ್ನು ತಪ್ಪಿಸಲು ಸಾಧ್ಯವಾಗುತ್ತದೆ ಎಂಬ ಅಂಶವನ್ನು ಅವಲಂಬಿಸಿದೆ. [೯]

ಕೆಲವು ಹೊರಾಂಗಣ ಅಪ್ಲಿಕೇಶನ್‌ಗಳಿಗೆ, ಹೆಚ್ಚಿನ ನಿಖರತೆಯ ಡಿಫರೆನ್ಷಿಯಲ್ ಜಿಪಿಎಸ್‌‍ ಸಂವೇದಕಗಳಿಂದಾಗಿ ಸ್ಲ್ಯಾಮ್ ನ ಅಗತ್ಯವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತೆಗೆದುಹಾಕಲಾಗಿದೆ. ಸ್ಲ್ಯಾಮ್ ದೃಷ್ಟಿಕೋನದಿಂದ, ಇವುಗಳನ್ನು ಸ್ಥಳ ಸಂವೇದಕಗಳಾಗಿ ವೀಕ್ಷಿಸಬಹುದು. ಅದರ ಸಾಧ್ಯತೆಗಳು ತುಂಬಾ ತೀಕ್ಷ್ಣವಾಗಿರುತ್ತವೆ ಮತ್ತು ಅವು ಸಂಪೂರ್ಣವಾಗಿ ನಿರ್ಣಯವನ್ನು ನಿಯಂತ್ರಿಸುತ್ತವೆ. ಆದಾಗ್ಯೂ, ಜಿಪಿಎಸ್ ಸಂವೇದಕಗಳು ಸಾಂದರ್ಭಿಕವಾಗಿ ನಿರಾಕರಿಸಬಹುದು ಅಥವಾ ಸಂಪೂರ್ಣವಾಗಿ ಕೆಳಗಿಳಿಯಬಹುದು. ಉದಾಹರಣೆಗೆ ಮಿಲಿಟರಿ ಸಂಘರ್ಷದ ಸಮಯದಲ್ಲಿ, ಕೆಲವು ರೊಬೊಟಿಕ್ಸ್ ಅಪ್ಲಿಕೇಶನ್‌ಗಳಿಗೆ ನಿರ್ದಿಷ್ಟ ಆಸಕ್ತಿಯನ್ನು ಹೊಂದಿರುತ್ತದೆ.

ಚಲನಶಾಸ್ತ್ರ ಮಾಡೆಲಿಂಗ್

ಎಂಬ ಪದವು ಮಾದರಿಯ ಚಲನಶಾಸ್ತ್ರವನ್ನು ಪ್ರತಿನಿಧಿಸುತ್ತದೆ. ಇದು ಸಾಮಾನ್ಯವಾಗಿ ರೋಬೋಟ್‌ಗೆ ನೀಡಲಾದ ಕ್ರಿಯೆಯ ಆಜ್ಞೆಗಳ ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು ಒಳಗೊಂಡಿರುತ್ತದೆ. ಮಾದರಿಯ ಭಾಗವಾಗಿ , ರೋಬೋಟ್‌ನ ಚಲನಶಾಸ್ತ್ರವು ಅಂತರ್ಗತ ಮತ್ತು ಸುತ್ತುವರಿದ ಶಬ್ದದ ಪರಿಸ್ಥಿತಿಗಳಲ್ಲಿ ಸಂವೇದನೆಯ ಅಂದಾಜುಗಳನ್ನು ಸುಧಾರಿಸಲು ಒಳಗೊಂಡಿದೆ. ಡೈನಾಮಿಕ್ ಮಾದರಿಯು ವಿವಿಧ ಸಂವೇದಕಗಳು, ವಿವಿಧ ಆಂಶಿಕ ದೋಷ ಮಾದರಿಗಳಿಂದ ಕೊಡುಗೆಗಳನ್ನು ಸಮತೋಲನಗೊಳಿಸುತ್ತದೆ ಮತ್ತು ಅಂತಿಮವಾಗಿ ರೋಬೋಟ್‌ನ ಸ್ಥಳ ಮತ್ತು ಶಿರೋನಾಮೆ ಸಂಭವನೀಯತೆಯ ಕೆಲವು ಕ್ಲೌಡ್‌ನೊಂದಿಗೆ ನಕ್ಷೆಯಂತೆ ತೀಕ್ಷ್ಣವಾದ ವರ್ಚುವಲ್ ಚಿತ್ರಣವನ್ನು ಒಳಗೊಂಡಿರುತ್ತದೆ. ಮ್ಯಾಪಿಂಗ್ ಅಂತಹ ಮಾದರಿಯ ಅಂತಿಮ ಚಿತ್ರಣವಾಗಿದೆ, ನಕ್ಷೆಯು ಅಂತಹ ಚಿತ್ರಣ ಅಥವಾ ಮಾದರಿಯ ಅಮೂರ್ತ ಪದವಾಗಿದೆ.

೨ಡಿ ರೋಬೋಟ್‌ಗಳಿಗೆ, ಚಲನಶಾಸ್ತ್ರವನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ತಿರುಗುವಿಕೆ ಮತ್ತು "ಮುಂದಕ್ಕೆ ಸರಿಸಿ" ಆಜ್ಞೆಗಳ ಮಿಶ್ರಣದಿಂದ ನೀಡಲಾಗುತ್ತದೆ. ಇವುಗಳನ್ನು ಹೆಚ್ಚುವರಿ ಮೋಟಾರ್ ಶಬ್ದದೊಂದಿಗೆ ಕಾರ್ಯಗತಗೊಳಿಸಲಾಗುತ್ತದೆ. ದುರದೃಷ್ಟವಶಾತ್ ಕೋನೀಯ ಮತ್ತು ರೇಖೀಯ ದಿಕ್ಕುಗಳಲ್ಲಿ ಸ್ವತಂತ್ರ ಶಬ್ದದಿಂದ ರೂಪುಗೊಂಡ ವಿತರಣೆಯು ಗೌಸಿಯನ್ ಅಲ್ಲ, ಆದರೆ ಸಾಮಾನ್ಯವಾಗಿ ಗಾಸಿಯನ್‌ನಿಂದ ಅಂದಾಜು ಮಾಡಲಾಗುತ್ತದೆ. ಪರ್ಯಾಯ ವಿಧಾನವೆಂದರೆ ಚಲನಶಾಸ್ತ್ರದ ಪದವನ್ನು ನಿರ್ಲಕ್ಷಿಸುವುದು ಮತ್ತು ಪ್ರತಿ ಆಜ್ಞೆಯ ನಂತರ ರೋಬೋಟ್ ಚಕ್ರಗಳಿಂದ ಓಡೋಮೆಟ್ರಿ ಡೇಟಾವನ್ನು ಓದುವುದು - ಅಂತಹ ಡೇಟಾವನ್ನು ನಂತರ ಚಲನಶಾಸ್ತ್ರದ ಬದಲಿಗೆ ಸಂವೇದಕಗಳಲ್ಲಿ ಒಂದಾಗಿ ಪರಿಗಣಿಸಬಹುದು.

ಅಕೌಸ್ಟಿಕ್ ಸ್ಲ್ಯಾಮ್

ಸಾಮಾನ್ಯ ಸ್ಲ್ಯಾಮ್ ಸಮಸ್ಯೆಯ ವಿಸ್ತರಣೆಯನ್ನು ಅಕೌಸ್ಟಿಕ್ ಡೊಮೇನ್‌ಗೆ ಅನ್ವಯಿಸಲಾಗಿದೆ, ಅಲ್ಲಿ ಪರಿಸರಗಳನ್ನು ಧ್ವನಿ ಮೂಲಗಳ ಮೂರು ಆಯಾಮದ (೩ಡಿ) ಸ್ಥಾನದಿಂದ ಪ್ರತಿನಿಧಿಸಲಾಗುತ್ತದೆ, ಇದನ್ನು ಕರೆಯಲಾಗುತ್ತದೆ. [೧೦] ಈ ತಂತ್ರದ ಆರಂಭಿಕ ಅನುಷ್ಠಾನಗಳು ಧ್ವನಿ ಮೂಲದ ಸ್ಥಳದ ನಿರ್ದೇಶನ-ಆಗಮನ (ಡಿಓಎ) ಅಂದಾಜುಗಳನ್ನು ಬಳಸಿಕೊಂಡಿವೆ ಮತ್ತು ಮೂಲ ಸ್ಥಳಗಳನ್ನು ನಿರ್ಧರಿಸಲು ಧ್ವನಿ ಸ್ಥಳೀಕರಣದ ಪ್ರಮುಖ ತಂತ್ರಗಳನ್ನು ಅವಲಂಬಿಸಿವೆ. ಅಕೌಸ್ಟಿಕ್ ಸ್ಲ್ಯಾಮ್ ನ ಬಳಕೆಯನ್ನು ಸಕ್ರಿಯಗೊಳಿಸಲು ವೀಕ್ಷಕ ಅಥವಾ ರೋಬೋಟ್ ಮೈಕ್ರೊಫೋನ್ ಅರೇಯೊಂದಿಗೆ ಸಜ್ಜುಗೊಂಡಿರಬೇಕು. ಇದರಿಂದ ಡಿಓಎ ವೈಶಿಷ್ಟ್ಯಗಳನ್ನು ಸರಿಯಾಗಿ ಅಂದಾಜು ಮಾಡಲಾಗುತ್ತದೆ. ಅಕೌಸ್ಟಿಕ್ ಸ್ಲ್ಯಾಮ್ ಅಕೌಸ್ಟಿಕ್ ದೃಶ್ಯ ಮ್ಯಾಪಿಂಗ್‌ನಲ್ಲಿ ಹೆಚ್ಚಿನ ಅಧ್ಯಯನಗಳಿಗೆ ಅಡಿಪಾಯವನ್ನು ಹಾಕಿದೆ ಮತ್ತು ಮಾತಿನ ಮೂಲಕ ಮಾನವ-ರೋಬೋಟ್ ಪರಸ್ಪರ ಕ್ರಿಯೆಯಲ್ಲಿ ಪ್ರಮುಖ ಪಾತ್ರವನ್ನು ವಹಿಸುತ್ತದೆ. ಬಹು, ಮತ್ತು ಸಾಂದರ್ಭಿಕವಾಗಿ ಮರುಕಳಿಸುವ ಧ್ವನಿ ಮೂಲಗಳನ್ನು ಮ್ಯಾಪ್ ಮಾಡಲು, ಅಕೌಸ್ಟಿಕ್ ಲ್ಯಾಂಡ್‌ಮಾರ್ಕ್‌ಗಳ ವಿಭಿನ್ನ ಉಪಸ್ಥಿತಿಯನ್ನು ನಿರ್ವಹಿಸಲು ಅಕೌಸ್ಟಿಕ್ ಸ್ಲ್ಯಾಮ್ ಸಿಸ್ಟಮ್ ರಾಂಡಮ್ ಫಿನೈಟ್ ಸೆಟ್ ಸಿದ್ಧಾಂತದಲ್ಲಿ ಅಡಿಪಾಯವನ್ನು ಬಳಸಿಕೊಳ್ಳುತ್ತದೆ. [೧೧] ಆದಾಗ್ಯೂ, ಅಕೌಸ್ಟಿಕ್ ಮೂಲದ ವೈಶಿಷ್ಟ್ಯಗಳ ಸ್ವರೂಪವು ಅಕೌಸ್ಟಿಕ್ ಸ್ಲ್ಯಾಮ್ ಅನ್ನು ಪರಿಸರದೊಳಗೆ ಪ್ರತಿಧ್ವನಿ, ನಿಷ್ಕ್ರಿಯತೆ ಮತ್ತು ಶಬ್ದದ ಸಮಸ್ಯೆಗಳಿಗೆ ಒಳಗಾಗುವಂತೆ ಮಾಡುತ್ತದೆ.

ಆಡಿಯೋವಿಶುವಲ್ ಸ್ಲ್ಯಾಮ್

ಮೂಲತಃ ಮಾನವ-ರೋಬೋಟ್ ಸಂವಹನಕ್ಕಾಗಿ ವಿನ್ಯಾಸಗೊಳಿಸಲಾಗಿದೆ. ಆಡಿಯೊ-ವಿಷುಯಲ್ ಸ್ಲ್ಯಾಮ್ ಒಂದು ಚೌಕಟ್ಟಾಗಿದ್ದು ಅದು ಪರಿಸರದೊಳಗಿನ ಅಕೌಸ್ಟಿಕ್ ಮತ್ತು ದೃಶ್ಯ ವಿಧಾನಗಳಿಂದ ಪಡೆದ ಹೆಗ್ಗುರುತು ವೈಶಿಷ್ಟ್ಯಗಳ ಸಮ್ಮಿಳನವನ್ನು ಒದಗಿಸುತ್ತದೆ. [೧೨] ಮಾನವನ ಪರಸ್ಪರ ಕ್ರಿಯೆಯು ದೃಶ್ಯ ವಿಧಾನದಲ್ಲಿ ಮಾತ್ರವಲ್ಲದೆ ಅಕೌಸ್ಟಿಕ್ ವಿಧಾನದಲ್ಲಿಯೂ ಗ್ರಹಿಸಿದ ವೈಶಿಷ್ಟ್ಯಗಳಿಂದ ನಿರೂಪಿಸಲ್ಪಟ್ಟಿದೆ; ಅದರಂತೆ, ಮಾನವ-ಕೇಂದ್ರಿತ ರೋಬೋಟ್‌ಗಳು ಮತ್ತು ಯಂತ್ರಗಳಿಗೆ ಸ್ಲ್ಯಾಮ್ ಅಲ್ಗಾರಿದಮ್‌ಗಳು ಎರಡೂ ವೈಶಿಷ್ಟ್ಯಗಳ ಸೆಟ್‌ಗಳಿಗೆ ಕಾರಣವಾಗಬೇಕು. ಒಂದು ಆಡಿಯೋ-ವಿಷುಯಲ್ ಫ್ರೇಮ್‌ವರ್ಕ್ ಮಾನವನ ಭಂಗಿಯಂತಹ ದೃಶ್ಯ ವೈಶಿಷ್ಟ್ಯಗಳು ಮತ್ತು ಮಾನವ ಭಾಷಣದಂತಹ ಆಡಿಯೊ ವೈಶಿಷ್ಟ್ಯಗಳ ಬಳಕೆಯ ಮೂಲಕ ಮಾನವ ಹೆಗ್ಗುರುತುಗಳ ಸ್ಥಾನಗಳನ್ನು ಅಂದಾಜು ಮಾಡುತ್ತದೆ ಮತ್ತು ನಕ್ಷೆ ಮಾಡುತ್ತದೆ ಮತ್ತು ಪರಿಸರದ ಹೆಚ್ಚು ದೃಢವಾದ ನಕ್ಷೆಗಾಗಿ ನಂಬಿಕೆಗಳನ್ನು ಬೆಸೆಯುತ್ತದೆ. ಮೊಬೈಲ್ ರೊಬೊಟಿಕ್ಸ್‌ನಲ್ಲಿನ ಅಪ್ಲಿಕೇಶನ್‌ಗಳಿಗಾಗಿ (ಉದಾ. ಡ್ರೋನ್‌ಗಳು, ಸರ್ವಿಸ್ ರೋಬೋಟ್‌ಗಳು), ಮಾನೋಕ್ಯುಲರ್ ಕ್ಯಾಮೆರಾಗಳು ಅಥವಾ ಮೈಕ್ರೋಎಲೆಕ್ಟ್ರಾನಿಕ್ ಮೈಕ್ರೊಫೋನ್ ಅರೇಗಳಂತಹ ಕಡಿಮೆ-ಶಕ್ತಿ, ಹಗುರವಾದ ಸಾಧನಗಳನ್ನು ಬಳಸುವುದು ಮೌಲ್ಯಯುತವಾಗಿದೆ. ಕಿರಿದಾದ ಕ್ಷೇತ್ರ-ವೀಕ್ಷಣೆ, ವೈಶಿಷ್ಟ್ಯ ಮುಚ್ಚುವಿಕೆಗಳು ಮತ್ತು ಹಗುರವಾದ ದೃಶ್ಯ ಸಂವೇದಕಗಳಿಗೆ ಸಾಮಾನ್ಯವಾದ ಆಪ್ಟಿಕಲ್ ಅವನತಿಗಳನ್ನು ಸಂಪೂರ್ಣ ಕ್ಷೇತ್ರ-ವೀಕ್ಷಣೆ ಮತ್ತು ಅಂತರ್ಗತವಾಗಿರುವ ಅಡೆತಡೆಯಿಲ್ಲದ ವೈಶಿಷ್ಟ್ಯ ಪ್ರಾತಿನಿಧ್ಯಗಳನ್ನು ಸರಿದೂಗಿಸುವ ಮೂಲಕ ಆಡಿಯೋ-ವಿಷುಯಲ್ ಸ್ಲ್ಯಾಮ್ ಸಹ ಅಂತಹ ಸಂವೇದಕಗಳ ಪೂರಕ ಕಾರ್ಯವನ್ನು ಅನುಮತಿಸುತ್ತದೆ. ಆಡಿಯೋ ಸಂವೇದಕಗಳು. ದೃಶ್ಯ ವಿಧಾನದಿಂದ ಹೆಗ್ಗುರುತು ನಂಬಿಕೆಗಳ ಸಮ್ಮಿಳನದ ಮೂಲಕ ಪ್ರತಿಧ್ವನಿ, ಧ್ವನಿ ಮೂಲದ ನಿಷ್ಕ್ರಿಯತೆ ಮತ್ತು ಶಬ್ದಕ್ಕೆ ಆಡಿಯೊ ಸಂವೇದಕಗಳ ಒಳಗಾಗುವಿಕೆಯನ್ನು ಸರಿದೂಗಿಸಬಹುದು. ಪರಿಸರದಲ್ಲಿ ಆಡಿಯೋ ಮತ್ತು ದೃಶ್ಯ ವಿಧಾನಗಳ ನಡುವಿನ ಪೂರಕ ಕಾರ್ಯವು ಮಾನವನ ಮಾತು ಮತ್ತು ಮಾನವ ಚಲನೆಯೊಂದಿಗೆ ಸಂಪೂರ್ಣವಾಗಿ ಸಂವಹನ ಮಾಡುವ ರೊಬೊಟಿಕ್ಸ್ ಮತ್ತು ಯಂತ್ರಗಳ ರಚನೆಗೆ ಮೌಲ್ಯಯುತವಾಗಿದೆ.

ಸಹಕಾರಿ ಸ್ಲ್ಯಾಮ್

೩ಡಿ ನಕ್ಷೆಗಳನ್ನು ರಚಿಸಲು ಸಹಯೋಗಿ ಸ್ಲ್ಯಾಮ್ ಬಹು ರೋಬೋಟ್‌ಗಳು ಅಥವಾ ಬಳಕೆದಾರರ ಚಿತ್ರಗಳನ್ನು ಸಂಯೋಜಿಸುತ್ತದೆ. [೧೩]

ಚಲಿಸುವ ವಸ್ತುಗಳು

ಇತರ ವಾಹನಗಳು ಅಥವಾ ಪಾದಚಾರಿಗಳನ್ನು ಒಳಗೊಂಡಿರುವಂತಹ ಸ್ಥಿರವಲ್ಲದ ಪರಿಸರಗಳು ಸಂಶೋಧನಾ ಸವಾಲುಗಳನ್ನು ಪ್ರಸ್ತುತಪಡಿಸುವುದನ್ನು ಮುಂದುವರೆಸುತ್ತವೆ. [೧೪] [೧೫] ಡಿಎಟಿಎಮ್‌ಓ ಜೊತೆಗಿನ ಸ್ಲ್ಯಾಮ್ ಎಂಬುದು ಏಜೆಂಟ್‌ನಂತೆಯೇ ಚಲಿಸುವ ವಸ್ತುಗಳನ್ನು ಟ್ರ್ಯಾಕ್ ಮಾಡುವ ಮಾದರಿಯಾಗಿದೆ. [೧೬]

ಲೂಪ್ ಮುಚ್ಚುವಿಕೆ

ಲೂಪ್ ಮುಚ್ಚುವಿಕೆಯು ಹಿಂದೆ ಭೇಟಿ ನೀಡಿದ ಸ್ಥಳವನ್ನು ಗುರುತಿಸುವ ಮತ್ತು ಅದಕ್ಕೆ ಅನುಗುಣವಾಗಿ ನಂಬಿಕೆಗಳನ್ನು ನವೀಕರಿಸುವ ಸಮಸ್ಯೆಯಾಗಿದೆ. ಇದು ಸಮಸ್ಯೆಯಾಗಿರಬಹುದು ಏಕೆಂದರೆ ಮಾದರಿ ಅಥವಾ ಅಲ್ಗಾರಿದಮ್ ದೋಷಗಳು ಸ್ಥಳಕ್ಕೆ ಕಡಿಮೆ ಪೂರ್ವಭಾವಿಗಳನ್ನು ನಿಯೋಜಿಸಬಹುದು. ವಿಶಿಷ್ಟವಾದ ಲೂಪ್ ಮುಚ್ಚುವಿಕೆಯ ವಿಧಾನಗಳು ಕೆಲವು ರೀತಿಯ ಸಂವೇದಕ ಅಳತೆಯ ಹೋಲಿಕೆಯನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಲು ಎರಡನೇ ಕ್ರಮಾವಳಿಯನ್ನು ಅನ್ವಯಿಸುತ್ತವೆ ಮತ್ತು ಹೊಂದಾಣಿಕೆ ಪತ್ತೆಯಾದಾಗ ಮೊದಲಿನ ಸ್ಥಳವನ್ನು ಮರುಹೊಂದಿಸುತ್ತವೆ. ಉದಾಹರಣೆಗೆ, ಹಿಂದೆ ಭೇಟಿ ನೀಡಿದ ಪ್ರತಿ ಸ್ಥಳದಿಂದ ಶೋಧಿಸುವ ವೈಶಿಷ್ಟ್ಯ ಪದಗಳ ವಾಹಕಗಳ ಚೀಲವನ್ನು ಸಂಗ್ರಹಿಸುವ ಮತ್ತು ಹೋಲಿಸುವ ಮೂಲಕ ಇದನ್ನು ಮಾಡಬಹುದು.

ಪರಿಶೋಧನೆ

"ಸಕ್ರಿಯ ಸ್ಲ್ಯಾಮ್" ಸ್ಲ್ಯಾಮ್‌‍ನ ಸಂಯೋಜಿತ ಸಮಸ್ಯೆಯನ್ನು ಅಧ್ಯಯನ ಮಾಡುತ್ತದೆ ಮತ್ತು ಸಾಧ್ಯವಾದಷ್ಟು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ನಕ್ಷೆಯನ್ನು ನಿರ್ಮಿಸಲು ಮುಂದೆ ಎಲ್ಲಿಗೆ ಹೋಗಬೇಕೆಂದು ನಿರ್ಧರಿಸುತ್ತದೆ. ಸಕ್ರಿಯ ಅನ್ವೇಷಣೆಯ ಅಗತ್ಯವನ್ನು ವಿಶೇಷವಾಗಿ ಸ್ಪರ್ಶ ಸ್ಲ್ಯಾಮ್ ನಂತಹ ವಿರಳ ಸಂವೇದನಾ ವ್ಯವಸ್ಥೆಗಳಲ್ಲಿ ಉಚ್ಚರಿಸಲಾಗುತ್ತದೆ. ಸಕ್ರಿಯ ಸ್ಲ್ಯಾಮ್ ಅನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ಕಾಲ್ಪನಿಕ ಕ್ರಿಯೆಗಳ ಅಡಿಯಲ್ಲಿ ನಕ್ಷೆಯ ಎಂಟ್ರೊಪಿಯನ್ನು ಅಂದಾಜು ಮಾಡುವ ಮೂಲಕ ನಡೆಸಲಾಗುತ್ತದೆ. "ಮಲ್ಟಿ ಏಜೆಂಟ್ ಸ್ಲ್ಯಾಮ್" ಈ ಸಮಸ್ಯೆಯನ್ನು ಅತ್ಯುತ್ತಮವಾಗಿ ಅನ್ವೇಷಿಸಲು ಬಹು ರೋಬೋಟ್‌ಗಳು ತಮ್ಮನ್ನು ಸಮನ್ವಯಗೊಳಿಸಿಕೊಳ್ಳುವ ಸಂದರ್ಭದಲ್ಲಿ ವಿಸ್ತರಿಸುತ್ತದೆ.

ಜೈವಿಕ ಸ್ಫೂರ್ತಿ

ನರವಿಜ್ಞಾನದಲ್ಲಿ, ಹಿಪೊಕ್ಯಾಂಪಸ್ ಸ್ಲ್ಯಾಮ್-ರೀತಿಯ ಗಣನೆಗಳಲ್ಲಿ ತೊಡಗಿಸಿಕೊಂಡಿರುವಂತೆ ಕಂಡುಬರುತ್ತದೆ. [೧೭] [೧೮] [೧೯] ಸ್ಥಳ ಕೋಶಗಳಿಗೆ ಕಾರಣವಾಗುತ್ತದೆ ಮತ್ತು ರ್‍ಯಾಟ್‌‍ಸ್ಲ್ಯಾಮ್ ನಂತಹ ಜೈವಿಕ-ಪ್ರೇರಿತ ಸ್ಲ್ಯಾಮ್‌‍ ವ್ಯವಸ್ಥೆಗಳಿಗೆ ಆಧಾರವಾಗಿದೆ.

ಅನುಷ್ಠಾನ ವಿಧಾನಗಳು

ಓಪನ್-ಸೋರ್ಸ್ ರೋಬೋಟ್ ಆಪರೇಟಿಂಗ್ ಸಿಸ್ಟಮ್ (ಆರ್‌ಓಎಸ್‌‍) ಲೈಬ್ರರಿಗಳಲ್ಲಿ ವಿವಿಧ ಸ್ಲ್ಯಾಮ್ ಅಲ್ಗಾರಿದಮ್‌ಗಳನ್ನು ಅಳವಡಿಸಲಾಗಿದೆ, ಇದನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ಪಾಯಿಂಟ್ ಕ್ಲೌಡ್ ಲೈಬ್ರರಿಯೊಂದಿಗೆ ೩ಡಿ ನಕ್ಷೆಗಳು ಅಥವಾ ಓಪನ್ ಸಿವಿ ಯಿಂದ ದೃಶ್ಯ ವೈಶಿಷ್ಟ್ಯಗಳಿಗಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ.

ಇಕೆಎಫ್ ಸ್ಲ್ಯಾಮ್

ರೊಬೊಟಿಕ್ಸ್‌ನಲ್ಲಿ, ಇಕೆಎಫ್ ಸ್ಲ್ಯಾಮ್ಎನ್ನುವುದು ಸ್ಲ್ಯಾಮ್ ಗಾಗಿ ವಿಸ್ತೃತ ಕಲ್ಮನ್ ಫಿಲ್ಟರ್ (ಇಕೆಎಫ್) ಅನ್ನು ಬಳಸಿಕೊಳ್ಳುವ ಅಲ್ಗಾರಿದಮ್‌ಗಳ ಒಂದು ವರ್ಗವಾಗಿದೆ. ವಿಶಿಷ್ಟವಾಗಿ, ಇಕೆಎಫ್ ಸ್ಲ್ಯಾಮ್ ಕ್ರಮಾವಳಿಗಳು ವೈಶಿಷ್ಟ್ಯವನ್ನು ಆಧರಿಸಿವೆ ಮತ್ತು ಡೇಟಾ ಅಸೋಸಿಯೇಷನ್‌ಗಾಗಿ ಗರಿಷ್ಠ ಸಂಭವನೀಯ ಕ್ರಮಾವಳಿ ಅನ್ನು ಬಳಸುತ್ತವೆ. ೧೯೯೦ ರ ದಶಕ ಮತ್ತು ೨೦೦೦ ರ ದಶಕದಲ್ಲಿ, ಸ್ಲ್ಯಾಮ್ ಅನ್ನು ಪರಿಚಯಿಸುವವರೆಗೂ ಸ್ಲ್ಯಾಮ್ ಗೆ ಇಕೆಎಫ್ ಸ್ಲ್ಯಾಮ್ ವಾಸ್ತವಿಕ ವಿಧಾನವಾಗಿತ್ತು. [೨೦]

ಇಕೆಎಫ್ ನೊಂದಿಗೆ ಸಂಯೋಜಿತವಾಗಿರುವ ಗಾಸಿಯನ್ ಶಬ್ದ ಊಹೆಯಾಗಿದೆ, ಇದು ಅನಿಶ್ಚಿತತೆಯನ್ನು ಎದುರಿಸಲು ಇಕೆಎಫ್ ಸ್ಲ್ಯಾಮ್ ನ ಸಾಮರ್ಥ್ಯವನ್ನು ಗಮನಾರ್ಹವಾಗಿ ದುರ್ಬಲಗೊಳಿಸುತ್ತದೆ. ಹಿಂಭಾಗದಲ್ಲಿ ಹೆಚ್ಚಿನ ಪ್ರಮಾಣದ ಅನಿಶ್ಚಿತತೆಯೊಂದಿಗೆ, ಇಕೆಎಫ್ ನಲ್ಲಿ ರೇಖೀಯೀಕರಣವು ವಿಫಲಗೊಳ್ಳುತ್ತದೆ. [೨೧]

ಗ್ರಾಫ್‌ಸ್ಲಾಮ್

ರೊಬೊಟಿಕ್ಸ್‌ನಲ್ಲಿ, ಗ್ರಾಫ್‌ಸ್ಲಾಮ್ ಒಂದು ಸ್ಲ್ಯಾಮ್ ಅಲ್ಗಾರಿದಮ್ ಆಗಿದ್ದು, ಇದು ವೀಕ್ಷಣಾ ಪರಸ್ಪರ ಅವಲಂಬನೆಗಳ ಫ್ಯಾಕ್ಟರ್ ಗ್ರಾಫ್ ಅನ್ನು ಉತ್ಪಾದಿಸುವ ಮೂಲಕ ಉತ್ಪತ್ತಿಯಾಗುವ ವಿರಳ ಮಾಹಿತಿ ಮ್ಯಾಟ್ರಿಕ್ಸ್‌ಗಳನ್ನು ಬಳಸುತ್ತದೆ (ಅವು ಒಂದೇ ಹೆಗ್ಗುರುತನ್ನು ಹೊಂದಿರುವ ಡೇಟಾವನ್ನು ಹೊಂದಿದ್ದರೆ ಎರಡು ಅವಲೋಕನಗಳು ಸಂಬಂಧಿಸಿವೆ). [೨೨]

ಇತಿಹಾಸ

೧೯೮೬ರಲ್ಲಿ [೨೩] ಪ್ರಾದೇಶಿಕ ಅನಿಶ್ಚಿತತೆಯ ಪ್ರಾತಿನಿಧ್ಯ ಮತ್ತು ಅಂದಾಜಿನ ಕುರಿತು ಆರ್.ಸಿ. ಸ್ಮಿತ್ ಮತ್ತು ಪಿ. ಚೀಸ್ಮನ್ [೨೪] ಸಂಶೋಧನೆಯು ಸ್ಲ್ಯಾಮ್ ನಲ್ಲಿನ ಒಂದು ಮೂಲ ಕಾರ್ಯವಾಗಿದೆ. ೧೯೯೦ ರ ದಶಕದ ಆರಂಭದಲ್ಲಿ ಹಗ್ ಎಫ್. ಡ್ಯುರಾಂಟ್-ವೈಟ್ ಅವರ ಸಂಶೋಧನಾ ಗುಂಪು ಈ ಕ್ಷೇತ್ರದಲ್ಲಿ ಇತರ ಪ್ರವರ್ತಕ ಕೆಲಸವನ್ನು ನಡೆಸಿತು. [೨೫] ಇದು ಸ್ಲ್ಯಾಮ್ ಗೆ ಪರಿಹಾರಗಳು ಅನಂತ ಡೇಟಾ ಮಿತಿಯಲ್ಲಿ ಅಸ್ತಿತ್ವದಲ್ಲಿದೆ ಎಂದು ತೋರಿಸಿದೆ. ಈ ಅನ್ವೇಷಣೆಯು ಗಣನೆಗೆ ಒಳಪಡುವ ಮತ್ತು ಪರಿಹಾರವನ್ನು ಅಂದಾಜು ಮಾಡುವ ಅಲ್ಗಾರಿದಮ್‌ಗಳ ಹುಡುಕಾಟವನ್ನು ಪ್ರೇರೇಪಿಸುತ್ತದೆ. ೧೯೯೫ [೨೬] ಐಎಸ್‌ಆರ್‌‍ ನಲ್ಲಿ ಮೊದಲ ಬಾರಿಗೆ ಕಾಣಿಸಿಕೊಂಡ "ಸ್ವಯಂ ನಿರ್ದೇಶಿತ ವಾಹನಗಳ ಸ್ಥಳೀಕರಣ" ಎಂಬ ಪತ್ರಿಕೆಯಲ್ಲಿ ಸ್ಲ್ಯಾಮ್ ಎಂಬ ಸಂಕ್ಷಿಪ್ತ ರೂಪವನ್ನು ರಚಿಸಲಾಗಿದೆ.

ಸೆಬಾಸ್ಟಿಯನ್ ಥ್ರೂನ್ ನೇತೃತ್ವದ ಸ್ವಯಂ-ಚಾಲನಾ ಸ್ಟಾನ್ಲಿ ಮತ್ತು ಜೂನಿಯರ್ ಕಾರುಗಳು ದರ್ಪಾ ಗ್ರ್ಯಾಂಡ್ ಚಾಲೆಂಜ್ ಅನ್ನು ಗೆದ್ದವು ಮತ್ತು ೨೦೦೦ ದ ದಶಕದಲ್ಲಿ ದರ್ಪಾ ಅರ್ಬನ್ ಚಾಲೆಂಜ್‌ನಲ್ಲಿ ಎರಡನೇ ಸ್ಥಾನವನ್ನು ಪಡೆದುಕೊಂಡವು ಮತ್ತು ಸ್ಲ್ಯಾಮ್ ವ್ಯವಸ್ಥೆಗಳನ್ನು ಒಳಗೊಂಡಿತ್ತು, ಸ್ಲ್ಯಾಮ್ ಅನ್ನು ವಿಶ್ವದಾದ್ಯಂತ ಗಮನಕ್ಕೆ ತಂದಿತು. ಮಾಸ್-ಮಾರ್ಕೆಟ್ ಸ್ಲ್ಯಾಮ್ ಅಳವಡಿಕೆಗಳನ್ನು ಈಗ ಗ್ರಾಹಕ ರೋಬೋಟ್ ವ್ಯಾಕ್ಯೂಮ್ ಕ್ಲೀನರ್‌ಗಳಲ್ಲಿ ಕಾಣಬಹುದು. [೨೭]

ಉಲ್ಲೇಖಗಳು