Нэнси Грейс Роман (телескоп)

Космический телескоп «Нэнси Грейс Роман» (англ. Nancy Grace Roman Space Telescope, англ. Roman Space Telescope, RST; предыдущий вариант названия — Wide Field Infrared Survey Telescope) — широкодиапазонная инфракрасная обсерватория, шестая «великая» обсерватория НАСА, которая была рекомендована в 2010 году Десятилетним опросным комитетом Национального исследовательского совета США в качестве главного приоритета на следующее десятилетие в астрономии. 17 февраля 2016 года WFIRST был официально назначен миссией NASA[5]. В мае 2020 года был назван в честь Нэнси Роман, одной из первых женщин-руководителей в НАСА[6].

Нэнси Грейс Роман
3D изображение космического телескопа
3D изображение космического телескопа
ОрганизацияNASA / JPL / GSFC
Тип орбитыгало-орбита
Дата запускаМай 2027 года (планируется)[1]
Место запускаКЦ Кеннеди, LC-39А
Средство вывода на орбитуFalcon Heavy[1][2]
Масса4166 кг[3], 4059 кг[3] и 107 кг[3]
Диаметр2,36 м[4]
Научные инструменты
Логотип миссии
Сайтwfirst.gsfc.nasa.gov
Логотип Викисклада Медиафайлы на Викискладе
Визуализация траектории полёта телескопа в точку Лагранжа L2 Солнце-Земля

Обсерватория RST должна стать идеологическим наследником сразу трёх миссий — Хаббла, инфракрасного телескопа WISE и запущенной 25 декабря 2021 года обсерватории «Джеймс Уэбб». RST должна получить первые прямые фотографии экзопланет, раскрыть сущность тёмной энергии и понять, как распределена материя по Вселенной.

История программы

Разработка телескопа

  • 16 августа 2010 года Национальный исследовательский совет (NRC) академий наук США обнародовал обзор направлений исследовательской работы в области астрономии и астрофизики на следующее десятилетие. Приоритет среди крупных космических проектов, стоимость которых превышает миллиард долларов, отдан космической инфракрасной обсерватории WFIRST с зеркалом 1,3 метра и предполагаемым бюджетом 1,6 млрд долларов[7].
  • В 2010 году была сформирована Рабочая группа (Science Definition Team, SDT) проекта WFIRST.
  • 5 июня 2012 года стало известно, что Национальное управление военно-космической разведки США подарило НАСА две основы для телескопов, которые изначально намеревалось использовать для слежения за поверхностью Земли с орбиты, но затем планы разведки поменялись, и уже созданные инструменты признали устаревшими и невостребованными. По размеру главного зеркала они соответствовали телескопу «Хаббл» (2,4 метра), но обладали примерно в 100 раз бо́льшим полем зрения[8]. Одну из подаренных основ было решено использовать после соответствующего обновления в качестве базы для проекта WFIRST.
  • 19 февраля 2016 года проект WFIRST был одобрен для полноценного изготовления и запуска с максимальным бюджетом в 3,2 миллиарда долларов[9].
  • 19 октября 2017 года НАСА опубликовало отчёт независимой от основной рабочей группы специалистов, согласно которому стоимость телескопа составит от 3,9 млрд до 4,2 млрд долларов. Кроме того, в отчете независимые эксперты ставят под сомнение ключевые решения специалистов JPL: коронограф реализовать сложнее, чем планирует JPL. Это же касается и некоторых других элементов будущего телескопа[10].
  • 28 августа 2019 года НАСА сообщило об успешном прохождении стадии защиты эскизного проекта (preliminary design review, PDR) будущего телескопа[11][12].
  • 24 сентября 2019 года JPL объявила об успешной защите эскизного проекта коронографа, который защитит высокочувствительную оптику будущего телескопа; таким образом, подтверждена готовность к сборке летного экземпляра этого инструмента[13][14][15].
  • 3 сентября 2020 года было изготовлено главное 2,4-метровое зеркало телескопа. Оно имеет тот же размер, что и у телескопа им. Хаббла, но весит меньше четверти — 186 кг.[16] Зеркало Хаббла 828 кг.[17].
  • 6 мая 2021 года НАСА объявило о завершении анализа проекта (стадия Critical Design Review) коронографа, таким образом утвердив его окончательный вид. Теперь специалисты перейдут к изготовлению и сборке полетного варианта инструмента[18][19].
  • 29 сентября 2021 года НАСА объявило о завершении всех проектных и опытно-конструкторских работ по телескопу (стадия Critical Design Review). Ожидается, что полетное оборудование и научные инструменты будут готовы в 2024 году, после чего начнется сборка всего телескопа и его испытания[20][21].

Подготовка и запуск

  • Согласно первоначальным планам космического агентства, постройка WFIRST изначально должна была начаться в 2019 году, однако она была перенесена на несколько лет из-за неясного статуса проекта.
  • В 2018 и 2019 годах власти США пытались полностью закрыть проект в связи с переориентацией на реализацию лунной программы «Артемида». Подобные предложения вызвали протесты научного сообщества и многих конгрессменов и сенаторов, в результате чего проект удалось сохранить.
  • В начале 2020 года запуск телескопа планировалось осуществить в октябре 2026 года.
  • В сентябре 2021 года запуск телескопа планировалось осуществить не позднее мая 2027 года ракетой-носителем Delta IV Heavy.
  • 19 июля 2022 года НАСА сообщило, что для запуска телескопа в октябре 2026 года выбрана сверхтяжелая ракета-носитель Falcon Heavy компании SpaceX. Стоимость контракта составит 255 млн долларов[1].

Научные задачи

Научные задачи RST относятся к передовым вопросам в космологии и исследованиях экзопланет.

Широкоугольная камера WFI
  • Поиск ответов на основные вопросы о темной энергии (совместно с программой ЕКА EUCLID), в том числе: вызвано ли космологическое ускорение новым компонентом энергии или нарушением принципов общей относительности на космологических масштабах. Телескоп будет использовать три метода поиска темной энергии: поиск барионных акустических осциляций[англ.], наблюдение за удаленными сверхновыми, использование слабого гравитационного линзирования.
Коронограф

Изначально планировалось разработать и установить полноценный прибор, но из-за финансовых ограничений (проект RST едва укладывается в бюджет, а администрация Президента Трампа неоднократно предлагала его отменить) было принято решение ограничиться демонстратором технологий, который, тем не менее, сможет получать ценную для науки информацию. С помощью коронографа будет возможно получать изображения и спектры гигантских экзопланет (супер Юпитеров). Но главная цель коронографа телескопа RST — проверка технологий, которые будут использованы в будущих миссиях. Ожидается, что в течение первых 18 месяцев работы коронограф должен продемонстрировать свою работоспособность, после чего ученые со всего мира смогут подать заявки на наблюдения.

  • Продолжение поиска крупных экзопланет размером с Юпитер и массой в 10 % от земной[22] (небольшие каменистые планеты, вроде наших Земли и Марса, данный коронограф увидеть не сможет) методом микролинзирования:
 — насколько часто планетные системы похожи на солнечную;
 — какие типы планет существуют во внешних холодных регионах систем;
 — что определяет пригодность для жизни для планет земной группы.
Обзор затронет 100 млн звезд в течение сотен дней с ожидаемым результатом в 2,5 тыс. открытых экзопланет.
  • Получение непосредственных изображений крупных экзопланет, вроде газовых гигантов Солнечной системы, и изучение их спектров.
  • Изучение кометных облаков, астероидов, газа и пыли, подобные главному поясу астероидов или облаку Оорта в Солнечной системе, окружающие далекие светила. Предполагается, что их изучение прояснит историю рождения Земли и всей Солнечной системы в целом.

Научные инструменты

Wide-Field Instrument (WFI, широкопольный инструмент) — широкоугольная 288-мегапиксельная многоспектральная камера инфракрасного диапазона разработки Lockheed Martin. Четкость изображений будет близка к фотографиям телескопа Хаббл, но на снимок WFIRST будет попадать около 0,28 квадратных градусов неба, что в сто раз больше чем у Хаббла[23]. В WFI используются решения, похожие на те, что компания уже применяла в камере ближнего инфракрасного диапазона (NIRCam), которая установлена на телескопе Джеймса Уэбба. Однако фокальная решетка WFI примерно в 200 раз больше аналогичной у NIRCam. Это позволит получать панорамные изображения звездного поля. WFI будет проводить исследования темной энергии и поиск экзопланент методом микролинзирования. Ожидается, что аппаратура позволит просматривать более 200 миллионов звезд каждые 15 минут на протяжении больше года[24].

Coronagraphic Instrument (CGI, коронограф) — высококонтрастный коронограф с небольшим полем зрения и спектрометрами, покрывающими диапазон волн от видимого света до близкого ИК, также используется новая технология подавления звездного света. Представляет собой набор из нескольких светонепроницаемых ширм и двух миниатюрных гибких зеркал, чья поверхность может менять свою форму по команде с Земли. Бортовой компьютер будет подстраивать геометрию поверхности зеркал таким образом, что прибор сможет «удалять» свет далеких звезд с картинки. Это позволит увидеть планеты, которые вращаются вокруг них.

Оценка стоимости и финансирование проекта

  • В 2010 году, ещё до того, как военные подарили НАСА 2,4-метровое зеркало, проект оценивался в 1,6 млрд долларов.
  • 19 октября 2017 года НАСА опубликовало отчёт независимой от основной рабочей группы специалистов, согласно которому стоимость телескопа составит от 3,9 млрд до 4,2 млрд долларов[10].
  • По состоянию на начало 2019 года Рабочая группа WFIRST оценивала стоимость создания телескопа в 3,2 млрд долларов. Столь заметное увеличение стоимости произошло по нескольким причинам: инфляция с момента первоначальных планов в 2010 году (+700 млн долларов), добавление коронографа (+500 млн долларов), затраты на сопровождение основной научной программы (+100 млн долларов), а также издержки, связанные с заменой первоначально предполагаемого зеркала диаметра 1,3 метра на подаренное военными 2,4-метровое (+300 млн долларов)[25].
  • В 2020 году, до наступления пандемии COVID-19, затраты на полный жизненный цикл Roman Space Telescope оценивались в 3,9 млрд долларов. В марте 2021 года, из-за влияния пандемии и переноса срока запуска телескопа с октября 2026 года на май 2027 года, стоимость телескопа выросла ещё на 400 млн долларов[26].

См. также

Примечания

Ссылки