Связанное состояние

Связанное состояние — это сочетание двух или более фундаментальных строительных блоков, таких как частицы, атомы или тела, которые ведут себя как единый объект и для его разделения требуется энергия[1].

В квантовой физике связанное состояние — это квантовое состояние частицы, подверженное такому потенциалу, что частица имеет тенденцию оставаться локализованной в одной или нескольких областях пространства[2]. Потенциал может быть внешним или быть результатом присутствия другой частицы; в последнем случае можно эквивалентно определить связанное состояние как состояние, представляющее две или более частицы, энергия взаимодействия которых превышает полную энергию каждой отдельной частицы в отдельности. Одним из последствий является то, что, учитывая потенциал, исчезающий на бесконечности, состояния с отрицательной энергией должны быть связаны. Энергетический спектр набора связанных состояний чаще всего дискретен, в отличие от состояний рассеяния свободных частиц, которые имеют непрерывный спектр.

Метастабильные состояния с чистой положительной энергией взаимодействия, но большим временем затухания, хотя и не являются связанными состояниями в строгом смысле этого слова, часто также считаются нестабильными связанными состояниями и называются «квазисвязанными состояниями»[3]. Примеры включают радионуклиды и атомы Ридберга[4].

В релятивистской квантовой теории поля устойчивое связанное состояние n частиц с массами соответствует полюсу в S-матрице с энергией центра масс менее . Нестабильное связанное состояние проявляется в виде полюса со комплекснозначной энергией центра масс.

Примеры

Обзор различных семейств элементарных и составных частиц и теорий, описывающих их взаимодействия.

Определение

Пусть σ -конечное пространство с мерой есть вероятностное пространство, связанное с сепарабельным комплексным гильбертовым пространством . Определимоднопараметрическую группу унитарных операторов , оператор плотности и наблюдаемую на . Пусть индуцирована распределением вероятностей относительно . Тогда эволюция

связан (ограничена) по отношению к если

,

где .[источник не указан 36 дней][9]

Квантовая частица находится в связанном состоянии, если ни в какой момент времени она не оказывается «слишком далеко» от любой конечной области . Например, используя представление волновой функции, это означает

такой, что

В общем, квантовое состояние является связанным состоянием тогда и только тогда, когда оно конечно нормируемо во все времена [10]. Кроме того, связанное состояние лежит в пределах чисто точечной части спектра тогда и только тогда, когда оно является собственным состоянием [11].

Говоря более неформально, «ограниченность» является результатом выбора области определения и характеристик состояния, а не наблюдаемой велечины. Для конкретного примера: пусть и разрешим быть оператором координаты. Учитывая компактную и .

  • Если эволюция состояния «перемещает этот волновой пакет вправо», например, если для всех , затем не является связанным состоянием по отношению к координате.
  • Если не меняется во времени, то есть для всех , тогда привязано по отношению к положению.
  • В более общем случае: если эволюция состояния «просто движется внутри ограниченной области», то привязано по отношению к координате.

Характеристики

Поскольку конечно нормируемые состояния должны лежать в пределах чисто точечной части (дискретного) спектра, связанные состояния должны лежать в чисто точечной части. Однако, как указали Нейман и Вигнер, энергия связанного состояния может находиться в непрерывной части спектра. Это явление называется связанным состоянием в континууме[12][13].

Состояния, связанные с координатой

Рассмотрим одночастичное уравнение Шрёдингера. Если состояние обладает энергией , то волновая функция ψ удовлетворяет для некоторого

так что ψ экспоненциально затухает при больших x. Такое поведение хорошо изучено для плавно меняющихся потенциалов в приближении ВКБ для волновой функции, где наблюдается колебательное поведение, если правая часть уравнения отрицательна, и поведение роста/затухания, если оно положительно[14]. Следовательно, состояния с отрицательной энергией связаны, если V обращается в нуль на бесконечности.

Невырожденность в одномерных связанных состояниях

Ниже показано, что одномерные связанные состояния невырождены по энергии для волновых функций с хорошим поведением, которые затухают до нуля на бесконечности. Это не обязательно справедливо для волновой функции в более высоких измерениях. Благодаря свойству невырожденных состояний одномерные связанные состояния всегда можно выразить как действительные волновые функции.

Теорема об узлах

Теорема об узлах утверждает, что n-я связанная волновая функция, упорядоченная по возрастанию энергии, имеет ровно n-1 узлов, то есть точки где . Из-за формы независимых от времени уравнений Шрёдингера физическая волновая функция не может иметь поскольку это соответствует решению [15].

Требования

Бозон с массой mχ, передающий слабосвязанное взаимодействие, создаёт потенциал взаимодействия типа Юкавы:

,

где , g — калибровочная константа связи, ƛi = /mic

— приведённая комптоновская длина волны. Скалярный бозон создает универсальный потенциал притяжения, тогда как векторый притягивает частицы к античастицам, но отталкивает, как подобные пары. Для двух частиц массой m1 и m2 боровский радиус системы равен

и даёт безразмерное число

.

Для того чтобы первое связанное состояние вообще существовало, . Поскольку фотон безмассовый, то для электромагнетизма D бесконечно. Для слабого взаимодействия масса Z-бозона равна 91,1876 ± 0,0021 GeV/c2, что предотвращает образование связанных состояний между большинством частиц, так как оно составляет 97,2 times массы протона и 178,000 times массы электрона.

Если бы хиггсовское взаимодействие не нарушило электрослабую симметрию на электрослабом масштабе, то SU(2) слабое взаимодействие обладало бы свойством конфайнмента[16].

Примечания

Литература

  • Blanchard, Philippe. Some Applications of the Spectral Representation // Mathematical Methods in Physics: Distributions, Hilbert Space Operators, Variational Methods, and Applications in Quantum Physics : [] / Philippe Blanchard, Edward Brüning. — 2nd. — Switzerland : Springer International Publishing, 2015. — P. 431. — ISBN 978-3-319-14044-5.
  • Gustafson, Stephen J. Spectrum and Dynamics // Mathematical Concepts of Quantum Mechanics : [] / Stephen J. Gustafson, Israel Michael Sigal. — 2nd. — Berlin, Heidelberg : Springer-Verlag, 2011. — P. 50. — ISBN 978-3-642-21865-1.
  • Ruelle, David (9 January 2016). "A Remark on Bound States in Potential-Scattering Theory" (PDF). Nuovo Cimento A. 61 (June 1969): 655—662. doi:10.1007/BF02819607. S2CID 56050354. Дата обращения: 27 декабря 2021.