Целочисленный квадратный корень

Целочисленный квадратный корень (isqrt) натурального числа n — это положительное число m, которое равно наибольшему целому числу, меньшему либо равному квадратному корню из n,

Например, поскольку и .

Алгоритм

Одним из путей вычисления и — использование метода Ньютона для поиска решения уравнения , используя итеративную формулу[1][2]

Последовательность сходится квадратично к при [3]. Можно доказать, что если выбрано в качестве начального значения, можно останавливаться, как только

,

чтобы обеспечить, что

Использование только целочисленного деления

Для вычисления для очень больших целых чисел n можно использовать частное деления с остатком при обеих операциях деления. Преимуществом является использование только целых чисел для каждого промежуточного значения, что освобождает от использования представления чисел в виде чисел с плавающей запятой. Это эквивалентно использованию итеративной формулы

Основываясь на факте, что

можно показать, что последовательность достигает за конечное число итераций [4].

Однако не обязательно будет неподвижной точкой итеративной формулы, приведённой выше. Можно показать, что будет неподвижной точкой тогда и только тогда, когда не является полным квадратом. Если является полным квадратом, последовательность не сходится, а переходит в цикл длины два, поочерёдно меняя и . Для прекращения работы достаточно проверить, что либо последовательность сходится (повторение предыдущего значения), либо что следующее значение ровно на единицу больше текущего, в последнем случае новое значение отбрасывается.

Используя битовые операции

Если * означает умножение, << означает сдвиг влево, а >> — логический сдвиг вправо, рекурсивный алгоритм поиска целочисленного квадратного корня из любого натурального числа следующий:

function integerSqrt(n):    if n < 0:        error "integerSqrt работает только с неотрицательным входом"    else if n < 2:        return n    else:        smallCandidate = integerSqrt(n >> 2) << 1        largeCandidate = smallCandidate + 1        if largeCandidate*largeCandidate > n:            return smallCandidate        else:            return largeCandidate

Или итерации вместо рекурсии:

function integerSqrt(n):    if n < 0:        error "integerSqrt работает только с неотрицательным входом"         # Находим наибольший сдвиг.    shift = 2    nShifted = n >> shift    while nShifted ≠ 0 and nShifted ≠ n:        shift = shift + 2        nShifted = n >> shift    shift = shift - 2        # Находим цифры результата.    result = 0    while shift ≥ 0:        result = result << 1        candidateResult = result + 1        if candidateResult*candidateResult ≤ n >> shift:            result = candidateResult        shift = shift - 2       return result

Расчётная область

Хотя является иррациональным числом для большинства значений , последовательность содержит только рациональные члены, если рационально. Таким образом, используя этот метод, нет необходимости выходить за пределы поля рациональных чисел, чтобы вычислить , что имеет некоторое теоретическое преимущество.

Критерий остановки

Можно показать, что является наибольшим числом для критерия остановки

,

который обеспечивает, что в вышеприведённом алгоритме.

В приложениях, использующих отличные от рациональных чисел форматы (например, плавающую запятую), константу остановки следует выбрать меньшей единицы, чтобы избежать ошибок округления.

См. также

Примечания

Ссылки