Числа Фибоначчи

Чи́сла Фибона́ччи (вариант написания — Фибона́чи[2]) — элементы числовой последовательности

Черепица с квадратами, длина сторон которых является последовательными числами Фибоначчи: 1, 1, 2, 3, 5, 8, 13 и 21
Спираль Фибоначчи: приближение золотой спирали, созданной путём рисования круговых дуг, соединяющих противоположные углы квадратов в мозаике Фибоначчи;[1] (см. предыдущее изображение)
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, … (последовательность A000045 в OEIS),

в которой первые два числа равны 0 и 1, а каждое последующее число равно сумме двух предыдущих чисел[3]. Названы в честь средневекового математика Леонардо Пизанского (известного как Фибоначчи)[4].

Правда, в некоторых книгах, особенно в старых[каких?], член , равный нулю, опускается — тогда последовательность Фибоначчи начинается с [5][6].

Говоря более формально, последовательность чисел Фибоначчи задаётся линейным рекуррентным соотношением:

,
где .

Иногда числа Фибоначчи рассматривают и для отрицательных значений как двусторонне бесконечную последовательность, удовлетворяющую тому же рекуррентному соотношению. Соответственно, члены с отрицательными индексами легко получить с помощью эквивалентной формулы «назад»: :

n−10−9−8−7−6−5−4−3−2−1012345678910
−5534−2113−85−32−11011235813213455

Легко заметить, что .

Происхождение

Количество пар кроликов образуют последовательность Фибоначчи
Страница Книги абака (лат. Liber abaci) Фибоначчи из Национальной центральной библиотеки Флоренции.
В правом блоке демонстрируется последовательность Фибоначчи. Позиции от 0 до 12 обозначены тёмным цветом римскими цифрами, а значения красным цветом индо-арабскими цифрами

Последовательность Фибоначчи была хорошо известна в древней Индии[7][8][9], где она применялась в метрических науках (просодии, другими словами — стихосложении) намного раньше, чем стала известна в Европе[8][10][11].

Образец длиной n может быть построен путём добавления S к образцу длиной n − 1, либо L к образцу длиной n − 2 — и просодицисты показали, что число образцов длиною n является суммой двух предыдущих чисел в последовательности[9]. Дональд Кнут рассматривает этот эффект в книге «Искусство программирования».

На Западе эта последовательность была исследована Леонардо Пизанским, известным как Фибоначчи, в его труде «Книга абака» (1202)[12][13]. Он рассматривает развитие идеализированной (биологически нереальной) популяции кроликов, где условия таковы: изначально дана новорождённая пара кроликов (самец и самка); со второго месяца после своего рождения кролики начинают спариваться и производить новую пару кроликов, причём уже каждый месяц; кролики никогда не умирают[14][15], — а в качестве искомого выдвигает количество пар кроликов через год.

  • В начале первого месяца есть только одна новорождённая пара (1).
  • В конце первого месяца по-прежнему только одна пара кроликов, но уже спарившаяся (1).
  • В конце второго месяца первая пара рождает новую пару и опять спаривается (2).
  • В конце третьего месяца первая пара рождает ещё одну новую пару и спаривается, вторая пара только спаривается (3).
  • В конце четвёртого месяца первая пара рождает ещё одну новую пару и спаривается, вторая пара рождает новую пару и спаривается, третья пара только спаривается (5).

В конце -го месяца количество пар кроликов будет равно количеству пар в предыдущем месяце плюс количеству новорождённых пар, которых будет столько же, сколько пар было два месяца назад, то есть [16].Возможно, эта задача также оказалась первой, моделирующей экспоненциальный рост популяции.

Название «последовательность Фибоначчи» впервые было использовано теоретиком XIX века Эдуардом Люка[17].

Формула Бине

Формула Бине выражает в явном виде значение как функцию от n:

где  — золотое сечение и и являются корнями характеристического уравнения Вообще, аналогичная формула существует для любой линейной рекуррентной последовательности, какой служит и последовательность Фибоначчи.

Обоснование

[18]

Преобразуем характеристическое уравнение к виду умножим обе части на : — и заменим в этой сумме на , что мы можем сделать в силу характеристического уравнения. Получим Затем продолжим так же умножать на и преобразовывать , следуя первоначальному уравнению:

Таким образом образуется общее уравнение: Чтобы это уравнение обратить в верное равенство и отсюда выразить сами числа Фибоначчи, нужно подставить корни и

Следствие и обобщение

Из формулы Бине следует, что для всех число есть округление то есть В частности, при справедлива асимптотика

Формула Бине может быть аналитически продолжена следующим образом:

При этом соотношение выполняется для любого комплексного числа z.

Тождества

Иллюстрация формулы для суммы квадратов первых n чисел Фибоначчи[19]
  • [20]
  • [20][21]
  • [20][22]
Это тождество можно доказать вычитанием первого из второго:
  • [23]
  • (см. рис.).
  • [20]
  • [20]
  • [24]
  • [25], где  — биномиальные коэффициенты.

И более общие формулы:

  • [26]
  • Числа Фибоначчи представляются значениями континуант на наборе единиц: то есть
    , а также
где матрицы имеют размер и где i — мнимая единица.
  • Числа Фибоначчи можно выразить через многочлены Чебышёва:
  • Для любого n справедливо
  • Как следствие, подсчёт определителей даёт тождество Кассини:[27][28]
  • С равенством Кассини сопряжено более общее утверждение, названное в честь Эжена Каталана:

  • Это утверждение выводится из тождества Кассини при помощи основного соотношения чисел Фибоначчи:

Свойства

Тринадцать ( ) способов расположения длинных (красные) и коротких слогов (серые) в каденции[en] длины шесть: пять ( ) заканчивается длинным слогом и восемь ( ) — коротким
Числа Фибоначчи — это суммы «мелких» диагоналей (показаны красным) треугольника Паскаля
Последовательные наклоны плоскости и график приближений к золотому сечению, рассчитанному путём деления каждого числа Фибоначчи на предыдущее
  • Наибольший общий делитель двух чисел Фибоначчи равен числу Фибоначчи с индексом, равным наибольшему общему делителю индексов, то есть Следствия:
    • делится на тогда и только тогда, когда делится на (за исключением ). В частности, делится на (то есть является чётным) только для делится на только для делится на только для и т. д.
    • может быть простым только для простых (с единственным исключением ). Например, число простое, и его индекс 13 также прост. Но, даже если число простое, число не всегда оказывается простым, и наименьший контрпример — Неизвестно, бесконечно ли множество чисел Фибоначчи, являющихся простыми.
  • Последовательность чисел Фибоначчи является частным случаем возвратной последовательности, её характеристический многочлен имеет корни и
  • Отношения являются подходящими дробями золотого сечения в частности,
  • Суммы биномиальных коэффициентов на диагоналях треугольника Паскаля являются числами Фибоначчи ввиду формулы
  • Нахождение числа Фибоначчи с помощью бинома Ньютона
  • В 1964 году Дж. Кон (J. H. E. Cohn) доказал,[29] что единственными точными квадратами среди чисел Фибоначчи являются числа Фибоначчи с индексами 0, 1, 2, 12:
  • Производящей функцией последовательности чисел Фибоначчи является:
    • В частности, 1/998,999 = 0.001001002003005008013021
  • Множество чисел Фибоначчи совпадает с множеством неотрицательных значений многочлена
на множестве неотрицательных целых чисел x и y[30].
  • Произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.
  • Период чисел Фибоначчи по модулю натурального числа называется периодом Пизано и обозначается . Периоды Пизано образуют последовательность:
    1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, … (последовательность A001175 в OEIS).
    • В частности, последние цифры чисел Фибоначчи образуют периодическую последовательность с периодом , последняя пара цифр чисел Фибоначчи образует последовательность с периодом , последние три цифры — с периодом последние четыре — с периодом последние пять — с периодом и т. д.
  • Натуральное число является числом Фибоначчи тогда и только тогда, когда или является квадратом[31].
  • Не существует арифметической прогрессии длиной больше 3, состоящей из чисел Фибоначчи[32].
  • Число Фибоначчи равно количеству кортежей длины n из нулей и единиц, в которых нет двух соседних единиц. При этом равно количеству таких кортежей, начинающихся с нуля, а  — начинающихся с единицы.
  • Произведение любых подряд идущих чисел Фибоначчи делится на произведение первых чисел Фибоначчи.
  • Бесконечная сумма чисел, обратных числам Фибоначчи, сходится, его сумма («обратная постоянная Фибоначчи») равна 3,359884...

Вариации и обобщения

В других областях

Жёлтая ромашковая головка, показывающая расположение в 21 (синяя) и 13 (аква) спиралей. Такие схемы, включающие последовательные числа Фибоначчи, встречаются у самых разных растений
Числа Фибоначчи в интерьере станции метро Ломоносовский проспект
Число возможных предков на линии наследования Х-хромосомы в данном поколении предков следует последовательности Фибоначчи (Хатчисон Л. Растущее семейное древо: сила ДНК в восстановлении семейных отношений)[33]
Иллюстрация модели Фогеля для n = 1 ... 500

Существует мнение, что почти все утверждения, находящие числа Фибоначчи в природных и исторических явлениях, неверны — это распространённый миф, который часто оказывается неточной подгонкой под желаемый результат[34][35].

В природе

  • Филлотаксис (листорасположение) у растений описывается последовательностью Фибоначчи, если листья (почки) на однолетнем приросте (побеге, стебле) имеют так называемое спиральное листорасположение. При этом число последовательно расположенных листьев (почек) по спирали плюс один, а также число совершенных при этом полных оборотов спирали вокруг оси однолетнего прироста (побега, стебля) выражаются обычно первыми числами Фибоначчи.
  • Семена подсолнуха, сосновые шишки, лепестки цветков, ячейки ананаса также располагаются согласно последовательности Фибоначчи[36][37][38][39].

В искусстве

В поэзии чаще находят отношение «золотого сечения» (золотую пропорцию), связанное через формулу Бине с числами Фибоначчи. Например, в поэме Ш. Руставели «Витязь в тигровой шкуре» и на картинах художников[40].

Однако числа Фибоначчи встречаются и непосредственно в поэзии и в музыке[41]

В кодировании

В теории кодирования предложены устойчивые так называемые «коды Фибоначчи»[42], причём основание этих кодов — иррациональное число.

См. также

Примечания

Литература

Ссылки

🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации