Beta-karbolin

chemická sloučenina

Beta-karbolin (také β-karbolin, systematický název 9H-pyrido[3,4-b]indol) je organická sloučenina patřící mezi dusíkaté heterocykly. Je základní stavební jednotkou indolových alkaloidů nazývaných β-karboliny.[2]

Beta-karbolin
Strukturní vzorec
Strukturní vzorec
Model molekuly
Model molekuly
Obecné
Systematický název9H-pyrido[3,4-b]indol
Ostatní názvynorharman
Sumární vzorecC11H8N2
Identifikace
Registrační číslo CAS244-63-3
PubChem64961
SMILESc1ccc3c(c1)[nH]c2cnccc23
InChIInChI=1S/C11H8N2/c1-2-4-10-8(3-1)9-5-6-12-7-11(9)13-10/h1-7,13H
Vlastnosti
Molární hmotnost168,19 g/mol
Teplota tání199 °C (472 K)[1]
Rozpustnost ve vodě>2,52 g/100 ml[1]
Bezpečnost
GHS07 – dráždivé látky
GHS07
[1]
Varování[1]
H-větyH302[1]
P-větyP264 P270 P301+312 P310 P501[1]
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).

Některá data mohou pocházet z datové položky.

Farmakologické vlastnosti

β-Karbolinové alkaloidy se vyskytují v mnoha rostlinách i živočiších a často fungují jako inverzní agonisté GABAA. U liány Banisteriopsis caapi β-karboliny harmin, harmalin a tetrahydroharmin významně ovlivňují farmakologické vlastnosti ayahuascy tím, že reverzní inhibicí monoaminoxidázy zabraňují rozkladu dimethyltryptaminu, čímž vyvolávají psychoaktivní účinky. Některé β-karboliny, jako jsou tryptolin a pinolin, se mohou přirozeně tvořit v lidském těle. Pinolin pravděpodobně společně s melatoninem ovlivňuje cirkadiánní rytmus.[zdroj?] β-karbolin je inverzním agonistou GABAA benzodiazepinového receptoru a má tak konvulzivní a anxiogenní účinky a zlepšuje paměť.[3] 3-hydroxymethyl-beta-karbolin blokuje hypnotické účinky flurazepamu u hlodavců; tento jeho účinek závisí na dávce.[4] 9-methyl-β-karboliny při vystavení ultrafialovému záření vyvolávají poškození DNA.[5]

Struktura

Beta-karbolin patří mezi indolové alkaloidy, molekula se skládá z pyridinového kruhu zkondenzovaného s indolovou strukturou.[6] Struktura β-karbolinu je podobná jako u tryptaminu, navíc je zde ethylaminový řetězec, který dalším atomem uhlíku propojuje obě části a vytváří tricyklickou molekulu. Biosyntéza β-karbolinů pravděpodobně vychází z podobných tryptaminů.[7] Míra nasycení na třetím kruhu se může lišit, to je níže zobrazeno červeným a modrým obarvením možných dvojných vazeb:

Strukturní vzorec substituovaného beta-karbolinu

Příklady beta-karbolinů

Některé významné β-karboliny jsou uvedeny v následující tabulce:

NázevR1R6R7R9Structure
β-karbolin××HHHH
Tryptolin  HHHH
Pinolin  HOCH3HH
Harman××CH3HHH
Harmin××CH3HOCH3H
Harmalin× CH3HOCH3H
Tetrahydroharmin  CH3HOCH3H
9-Methyl-β-karbolin××HHHCH3

Výskyt

Je známo 64 různých β-karbolinových alkaloidů obsažených v rostlinách. Suchá semena harmaly stepní (Peganum harmala) obsahují 0,16[8] až 5,9 %[9] β-karbolinových alkaloidů.

V důsledku přítomnosti β-karbolinů v kutikule některých štírů jejich pokožka po vystavení určitým vlnovým délkám z ultrafialové oblasti fluoreskuje.[10] Skupina β-karbolinů nazývaná eudistominy se vyskytuje u sumek, jako jsou například Ritterella sigillinoides,[11] Lissoclinum fragile[12] a Pseudodistoma aureum.[13]

β-karboliny podporují tvorbu sekundárních metabolitů u půdních bakterií rodu “Streptomyces”.[14][15] Vznik sekundárních metabolitů ovlivňují řízením exprese biosyntetických genů vazbou na ATP-vazebné regulátory skupiny LuxR.

Odkazy

Související články

Externí odkazy

Reference

V tomto článku byl použit překlad textu z článku beta-Carboline na anglické Wikipedii.