Convex position

In discrete and computational geometry, a set of points in the Euclidean plane or a higher-dimensional Euclidean space is said to be in convex position or convex independent if none of the points can be represented as a convex combination of the others.[1] A finite set of points is in convex position if all of the points are vertices of their convex hull.[1] More generally, a family of convex sets is said to be in convex position if they are pairwise disjoint and none of them is contained in the convex hull of the others.[2]

An assumption of convex position can make certain computational problems easier to solve. For instance, the traveling salesman problem, NP-hard for arbitrary sets of points in the plane, is trivial for points in convex position: the optimal tour is the convex hull.[3] Similarly, the minimum-weight triangulation of planar point sets is NP-hard for arbitrary point sets,[4] but solvable in polynomial time by dynamic programming for points in convex position.[5]

The Erdős–Szekeres theorem guarantees that every set of points in general position (no three in a line) in two or more dimensions has at least a logarithmic number of points in convex position.[6] If points are chosen uniformly at random in a unit square, the probability that they are in convex position is[7]

The McMullen problem asks for the maximum number such that every set of points in general position in a -dimensional projective space has a projective transformation to a set in convex position. Known bounds are .[8]

References