DNA and RNA codon tables

A codon table can be used to translate a genetic code into a sequence of amino acids.[1][2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis.[2][3] The mRNA sequence is determined by the sequence of genomic DNA.[4] In this context, the standard genetic code is referred to as translation table 1.[3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5-to-3 direction. Different tables with alternate codons are used depending on the source of the genetic code, such as from a cell nucleus, mitochondrion, plastid, or hydrogenosome.[5]

A circular diagram is separated into three rings, broken down into sections labeled with the letters: G, U, A, and C. Each represents a nucleotide found in RNA.
The standard RNA codon table organized in a wheel

There are 64 different codons in the genetic code and the below tables; most specify an amino acid.[6] Three sequences, UAG, UGA, and UAA, known as stop codons,[note 1] do not code for an amino acid but instead signal the release of the nascent polypeptide from the ribosome.[7] In the standard code, the sequence AUG—read as methionine—can serve as a start codon and, along with sequences such as an initiation factor, initiates translation.[3][8][9] In rare instances, start codons in the standard code may also include GUG or UUG; these codons normally represent valine and leucine, respectively, but as start codons they are translated as methionine or formylmethionine.[3][9]

The first table—the standard table—can be used to translate nucleotide triplets into the corresponding amino acid or appropriate signal if it is a start or stop codon. The second table, appropriately called the inverse, does the opposite: it can be used to deduce a possible triplet code if the amino acid is known. As multiple codons can code for the same amino acid, the International Union of Pure and Applied Chemistry's (IUPAC) nucleic acid notation is given in some instances.

Translation table 1

Standard RNA codon table

Amino-acid biochemical propertiesNonpolar (np)Polar (p)Basic (b)Acidic (a)Termination: stop codon *Initiation: possible start codon ⇒
Standard genetic code[1][10]
1st
base
2nd base3rd
base
UCAG
UUUU(Phe/F) Phenylalanine (np)UCU(Ser/S) Serine (p)UAU(Tyr/Y) Tyrosine (p)UGU(Cys/C) Cysteine (p)U
UUCUCCUACUGCC
UUA(Leu/L) Leucine (np)UCAUAAStop (Ochre) *[note 2]UGAStop (Opal) *[note 2]A
UUG ⇒UCGUAGStop (Amber) *[note 2]UGG(Trp/W) Tryptophan (np)G
CCUUCCU(Pro/P) Proline (np)CAU(His/H) Histidine (b)CGU(Arg/R) Arginine (b)U
CUCCCCCACCGCC
CUACCACAA(Gln/Q) Glutamine (p)CGAA
CUGCCGCAGCGGG
AAUU(Ile/I) Isoleucine (np)ACU(Thr/T) Threonine (p)AAU(Asn/N) Asparagine (p)AGU(Ser/S) Serine (p)U
AUCACCAACAGCC
AUAACAAAA(Lys/K) Lysine (b)AGA(Arg/R) Arginine (b)A
AUG ⇒(Met/M) Methionine (np)ACGAAGAGGG
GGUU(Val/V) Valine (np)GCU(Ala/A) Alanine (np)GAU(Asp/D) Aspartic acid (a)GGU(Gly/G) Glycine (np)U
GUCGCCGACGGCC
GUAGCAGAA(Glu/E) Glutamic acid (a)GGAA
GUG ⇒GCGGAGGGGG

As shown in the above table, NCBI table 1 includes the less-canonical start codons GUG and UUG.[3]

Inverse RNA codon table

Inverse table for the standard genetic code (compressed using IUPAC notation)[13]
Amino acidRNA codonsCompressedAmino acidRNA codonsCompressed
Ala, AGCU, GCC, GCA, GCGGCNIle, IAUU, AUC, AUAAUH
Arg, RCGU, CGC, CGA, CGG; AGA, AGGCGN, AGR; or
CGY, MGR
Leu, LCUU, CUC, CUA, CUG; UUA, UUGCUN, UUR; or
CUY, YUR
Asn, NAAU, AACAAYLys, KAAA, AAGAAR
Asp, DGAU, GACGAYMet, MAUG
Asn or Asp, BAAU, AAC; GAU, GACRAYPhe, FUUU, UUCUUY
Cys, CUGU, UGCUGYPro, PCCU, CCC, CCA, CCGCCN
Gln, QCAA, CAGCARSer, SUCU, UCC, UCA, UCG; AGU, AGCUCN, AGY
Glu, EGAA, GAGGARThr, TACU, ACC, ACA, ACGACN
Gln or Glu, ZCAA, CAG; GAA, GAGSARTrp, WUGG
Gly, GGGU, GGC, GGA, GGGGGNTyr, YUAU, UACUAY
His, HCAU, CACCAYVal, VGUU, GUC, GUA, GUGGUN
STARTAUG, CUG, UUGHUGSTOPUAA, UGA, UAGURA, UAG; or
UGA, UAR

Standard DNA codon table

Amino-acid biochemical propertiesNonpolar (np)Polar (p)Basic (b)Acidic (a)Termination: stop codon *Initiation: possible start codon ⇒
Standard genetic code[14][note 3]
1st
base
2nd base3rd
base
TCAG
TTTT(Phe/F) Phenylalanine (np)TCT(Ser/S) Serine (p)TAT(Tyr/Y) Tyrosine (p)TGT(Cys/C) Cysteine (p)T
TTCTCCTACTGCC
TTA(Leu/L) Leucine (np)TCATAAStop (Ochre) *[note 2]TGAStop (Opal) *[note 2]A
TTG ⇒TCGTAGStop (Amber) *[note 2]TGG(Trp/W) Tryptophan (np)G
CCTTCCT(Pro/P) Proline (np)CAT(His/H) Histidine (b)CGT(Arg/R) Arginine (b)T
CTCCCCCACCGCC
CTACCACAA(Gln/Q) Glutamine (p)CGAA
CTGCCGCAGCGGG
AATT(Ile/I) Isoleucine (np)ACT(Thr/T) Threonine (p)AAT(Asn/N) Asparagine (p)AGT(Ser/S) Serine (p)T
ATCACCAACAGCC
ATAACAAAA(Lys/K) Lysine (b)AGA(Arg/R) Arginine (b)A
ATG ⇒(Met/M) Methionine (np)ACGAAGAGGG
GGTT(Val/V) Valine (np)GCT(Ala/A) Alanine (np)GAT(Asp/D) Aspartic acid (a)GGT(Gly/G) Glycine (np)T
GTCGCCGACGGCC
GTAGCAGAA(Glu/E) Glutamic acid (a)GGAA
GTG ⇒GCGGAGGGGG

Inverse DNA codon table

Inverse table for the standard genetic code (compressed using IUPAC notation)[13]
Amino acidDNA codonsCompressedAmino acidDNA codonsCompressed
Ala, AGCT, GCC, GCA, GCGGCNIle, IATT, ATC, ATAATH
Arg, RCGT, CGC, CGA, CGG; AGA, AGGCGN, AGR; or
CGY, MGR
Leu, LCTT, CTC, CTA, CTG; TTA, TTGCTN, TTR; or
CTY, YTR
Asn, NAAT, AACAAYLys, KAAA, AAGAAR
Asp, DGAT, GACGAYMet, MATG
Asn or Asp, BAAT, AAC; GAT, GACRAYPhe, FTTT, TTCTTY
Cys, CTGT, TGCTGYPro, PCCT, CCC, CCA, CCGCCN
Gln, QCAA, CAGCARSer, STCT, TCC, TCA, TCG; AGT, AGCTCN, AGY
Glu, EGAA, GAGGARThr, TACT, ACC, ACA, ACGACN
Gln or Glu, ZCAA, CAG; GAA, GAGSARTrp, WTGG
Gly, GGGT, GGC, GGA, GGGGGNTyr, YTAT, TACTAY
His, HCAT, CACCAYVal, VGTT, GTC, GTA, GTGGTN
STARTATG, CTG, UTGHTGSTOPTAA, TGA, TAGTRA, TAR

Alternative codons in other translation tables

The genetic code was once believed to be universal:[16] a codon would code for the same amino acid regardless of the organism or source. However, it is now agreed that the genetic code evolves,[17] resulting in discrepancies in how a codon is translated depending on the genetic source.[16][17] For example, in 1981, it was discovered that the use of codons AUA, UGA, AGA and AGG by the coding system in mammalian mitochondria differed from the universal code.[16] Stop codons can also be affected: in ciliated protozoa, the universal stop codons UAA and UAG code for glutamine.[17][note 4] The following table displays these alternative codons.

Amino-acid biochemical propertiesNonpolar (np)Polar (p)Basic (b)Acidic (a)Termination: stop codon *
Comparison between codon translations with alternative and standard genetic codes[3]
CodeTranslation
table
DNA codon involvedRNA codon involvedTranslation
with this code
Standard translationNotes
Standard1Includes translation table 8 (plant chloroplasts).
Vertebrate mitochondrial2AGAAGAStop *Arg (R) (b)
AGGAGGStop *Arg (R) (b)
ATAAUAMet (M) (np)Ile (I) (np)
TGAUGATrp (W) (np)Stop *
Yeast mitochondrial3ATAAUAMet (M) (np)Ile (I) (np)
CTTCUUThr (T) (p)Leu (L) (np)
CTCCUCThr (T) (p)Leu (L) (np)
CTACUAThr (T) (p)Leu (L) (np)
CTGCUGThr (T) (p)Leu (L) (np)
TGAUGATrp (W) (np)Stop *
CGACGAabsentArg (R) (b)
CGCCGCabsentArg (R) (b)
Mold, protozoan, and coelenterate mitochondrial + Mycoplasma / Spiroplasma4TGAUGATrp (W) (np)Stop *Includes the translation table 7 (kinetoplasts).
Invertebrate mitochondrial5AGAAGASer (S) (p)Arg (R) (b)
AGGAGGSer (S) (p)Arg (R) (b)
ATAAUAMet (M) (np)Ile (I) (np)
TGAUGATrp (W) (np)Stop *
Ciliate, dasycladacean and Hexamita nuclear6TAAUAAGln (Q) (p)Stop *
TAGUAGGln (Q) (p)Stop *
Echinoderm and flatworm mitochondrial9AAAAAAAsn (N) (p)Lys (K) (b)
AGAAGASer (S) (p)Arg (R) (b)
AGGAGGSer (S) (p)Arg (R) (b)
TGAUGATrp (W) (np)Stop *
Euplotid nuclear10TGAUGACys (C) (p)Stop *
Bacterial, archaeal and plant plastid11See translation table 1.
Alternative yeast nuclear12CTGCUGSer (S) (p)Leu (L) (np)
Ascidian mitochondrial13AGAAGAGly (G) (np)Arg (R) (b)
AGGAGGGly (G) (np)Arg (R) (b)
ATAAUAMet (M) (np)Ile (I) (np)
TGAUGATrp (W) (np)Stop *
Alternative flatworm mitochondrial14AAAAAAAsn (N) (p)Lys (K) (b)
AGAAGASer (S) (p)Arg (R) (b)
AGGAGGSer (S) (p)Arg (R) (b)
TAAUAATyr (Y) (p)Stop *
TGAUGATrp (W) (np)Stop *
Blepharisma nuclear15TAGUAGGln (Q) (p)Stop *As of Nov. 18, 2016: absent from the NCBI update. Similar to translation table 6.
Chlorophycean mitochondrial16TAGUAGLeu (L) (np)Stop *
Trematode mitochondrial21TGAUGATrp (W) (np)Stop *
ATAAUAMet (M) (np)Ile (I) (np)
AGAAGASer (S)Arg (R) (b)
AGGAGGSer (S) (p)Arg (R) (b)
AAAAAAAsn (N) (p)Lys (K) (b)
Scenedesmus obliquus mitochondrial22TCAUCAStop *Ser (S) (p)
TAGUAGLeu (L) (np)Stop *
Thraustochytrium mitochondrial23TTAUUAStop *Leu (L) (np)Similar to translation table 11.
Pterobranchia mitochondrial24AGAAGASer (S) (p)Arg (R) (b)
AGGAGGLys (K) (b)Arg (R) (b)
TGAUGATrp (W) (np)Stop *
Candidate division SR1 and Gracilibacteria25TGAUGAGly (G) (np)Stop *
Pachysolen tannophilus nuclear26CTGCUGAla (A) (np)Leu (L) (np)
Karyorelict nuclear27TAAUAAGln (Q) (p)Stop *
TAGUAGGln (Q) (p)Stop *
TGUGAStop *orTrp (W) (np)Stop *
Condylostoma nuclear28TAAUAAStop *orGln (Q) (p)Stop *
TAGUAGStop *orGln (Q) (p)Stop *
TGAUGAStop *orTrp (W) (np)Stop *
Mesodinium nuclear29TAAUAATyr (Y) (p)Stop *
TAGUAGTyr (Y) (p)Stop *
Peritrich nuclear30TAUAAGlu (E) (a)Stop *
TAGUAGGlu (E) (a)Stop *
Blastocrithidia nuclear31TAAUAAStop *orGlu (E) (a)Stop *
TAGUAGStop *orGlu (E) (a)Stop *
TGAUGATrp (W) (np)Stop *
Cephalodiscidae mitochondrial code33AGAAGASer (S) (p)Arg (R) (b)Similar to translation table 24.
AGGAGGLys (K) (b)Arg (R) (b)
TAAUAATyr (Y) (p)Stop *
TGAUGATrp (W) (np)Stop *

See also

Notes

References

Further reading

External links