Gauss–Markov process

Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes.[1][2] A stationary Gauss–Markov process is unique[citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

Gauss–Markov processes obey Langevin equations.[3]

Basic properties

Every Gauss–Markov process X(t) possesses the three following properties:[4]

  1. If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process
  2. If f(t) is a non-decreasing scalar function of t, then Z(t) = X(f(t)) is also a Gauss–Markov process
  3. If the process is non-degenerate and mean-square continuous, then there exists a non-zero scalar function h(t) and a strictly increasing scalar function f(t) such that X(t) = h(t)W(f(t)), where W(t) is the standard Wiener process.

Property (3) means that every non-degenerate mean-square continuous Gauss–Markov process can be synthesized from the standard Wiener process (SWP).

Other properties

A stationary Gauss–Markov process with variance and time constant has the following properties.

  • Exponential autocorrelation:
  • A power spectral density (PSD) function that has the same shape as the Cauchy distribution:
    (Note that the Cauchy distribution and this spectrum differ by scale factors.)
  • The above yields the following spectral factorization:
    which is important in Wiener filtering and other areas.

There are also some trivial exceptions to all of the above.[clarification needed]

References