Geometric process

In probability, statistics and related fields, the geometric process is a counting process, introduced by Lam in 1988.[1] It is defined as

The geometric process. Given a sequence of non-negative random variables :, if they are independent and the cdf of is given by for , where is a positive constant, then is called a geometric process (GP).

The GP has been widely applied in reliability engineering[2]

Below are some of its extensions.

  • The α- series process.[3] Given a sequence of non-negative random variables:, if they are independent and the cdf of is given by for , where is a positive constant, then is called an α- series process.
  • The threshold geometric process.[4] A stochastic process is said to be a threshold geometric process (threshold GP), if there exists real numbers and integers such that for each , forms a renewal process.
  • The doubly geometric process.[5] Given a sequence of non-negative random variables :, if they are independent and the cdf of is given by for , where is a positive constant and is a function of and the parameters in are estimable, and for natural number , then is called a doubly geometric process (DGP).
  • The semi-geometric process.[6] Given a sequence of non-negative random variables , if and the marginal distribution of is given by , where is a positive constant, then is called a semi-geometric process
  • The double ratio geometric process.[7] Given a sequence of non-negative random variables , if they are independent and the cdf of is given by for , where and are positive parameters (or ratios) and . We call the stochastic process the double-ratio geometric process (DRGP).

References