Isotopes of tantalum

Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180m
Ta
(0.012%).

Isotopes of tantalum (73Ta)
Main isotopes[1]Decay
abun­dancehalf-life (t1/2)modepro­duct
177Tasynth56.56 hβ+177Hf
178Tasynth2.36 hβ+178Hf
179Tasynth1.82 yε179Hf
180Tasynth8.125 hε180Hf
β180W
180mTa0.0120%stable
181Ta99.988%stable
182Tasynth114.43 dβ182W
183Tasynth5.1 dβ183W
Standard atomic weight Ar°(Ta)

There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 days, 183Ta with a half-life of 5.1 days, and 177Ta with a half-life of 56.56 hours. All other isotopes have half-lives under a day, most under an hour. There are also numerous isomers, the most stable of which (other than 180mTa) is 178m1Ta with a half-life of 2.36 hours. All isotopes and nuclear isomers of tantalum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Tantalum has been proposed as a "salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of 181Ta, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 182
Ta
with a half-life of 114.43 days and produce approximately 1.12 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several months. Such a weapon is not known to have ever been built, tested, or used.[4] While the conversion factor from absorbed dose (measured in Grays) to effective dose (measured in Sievert) for gamma rays is 1 while it is 50 for alpha radiation (i.e., a gamma dose of 1 Gray is equivalent to 1 Sievert whereas an alpha dose of 1 Gray is equivalent to 50 Sievert), gamma rays are only attenuated by shielding, not stopped. As such, alpha particles require incorporation to have an effect while gamma rays can have an effect via mere proximity. In military terms, this allows a gamma ray weapon to deny an area to either side as long as the dose is high enough, whereas radioactive contamination by alpha emitters which do not release significant amounts of gamma rays can be counteracted by ensuring the material is not incorporated.

List of isotopes

Nuclide
[n 1]
ZNIsotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4]Normal proportionRange of variation
155
Ta
7382154.97459(54)#2.9+1.5
−1.1
 ms
[5]
p154Hf(11/2−)
155m
Ta
~323 keV12+4
−3
 μs
[6]
p154Hf11/2−?
156
Ta
[7]
7383155.97230(43)#106(4) msp (71%)155Hf(2−)
β+ (29%)156Hf
156m
Ta
102(7) keV0.36(4) sp155Hf9+
157
Ta
7384156.96819(22)10.1(4) msα (91%)153Lu1/2+
β+ (9%)157Hf
157m1
Ta
22(5) keV4.3(1) ms11/2−
157m2
Ta
1593(9) keV1.7(1) msα153Lu(25/2−)
158
Ta
7385157.96670(22)#49(8) msα (96%)154Lu(2−)
β+ (4%)158Hf
158m
Ta
141(9) keV36.0(8) msα (93%)154Lu(9+)
IT158Ta
β+158Hf
159
Ta
7386158.963018(22)1.04(9) sβ+ (66%)159Hf(1/2+)
α (34%)155Lu
159m
Ta
64(5) keV514(9) msα (56%)155Lu(11/2−)
β+ (44%)159Hf
160
Ta
7387159.96149(10)1.70(20) sα156Lu(2#)−
β+160Hf
160m
Ta
310(90)# keV1.55(4) sβ+ (66%)160Hf(9)+
α (34%)156Lu
161
Ta
7388160.95842(6)#3# sβ+ (95%)161Hf1/2+#
α (5%)157Lu
161m
Ta
50(50)# keV2.89(12) s11/2−#
162
Ta
7389161.95729(6)3.57(12) sβ+ (99.92%)162Hf3+#
α (.073%)158Lu
163
Ta
7390162.95433(4)10.6(18) sβ+ (99.8%)163Hf1/2+#
α (.2%)159Lu
164
Ta
7391163.95353(3)14.2(3) sβ+164Hf(3+)
165
Ta
7392164.950773(19)31.0(15) sβ+165Hf5/2−#
165m
Ta
60(30) keV9/2−#
166
Ta
7393165.95051(3)34.4(5) sβ+166Hf(2)+
167
Ta
7394166.94809(3)1.33(7) minβ+167Hf(3/2+)
168
Ta
7395167.94805(3)2.0(1) minβ+168Hf(2−,3+)
169
Ta
7396168.94601(3)4.9(4) minβ+169Hf(5/2+)
170
Ta
7397169.94618(3)6.76(6) minβ+170Hf(3)(+#)
171
Ta
7398170.94448(3)23.3(3) minβ+171Hf(5/2−)
172
Ta
7399171.94490(3)36.8(3) minβ+172Hf(3+)
173
Ta
73100172.94375(3)3.14(13) hβ+173Hf5/2−
174
Ta
73101173.94445(3)1.14(8) hβ+174Hf3+
175
Ta
73102174.94374(3)10.5(2) hβ+175Hf7/2+
176
Ta
73103175.94486(3)8.09(5) hβ+176Hf(1)−
176m1
Ta
103.0(10) keV1.1(1) msIT176Ta(+)
176m2
Ta
1372.6(11)+X keV3.8(4) µs(14−)
176m3
Ta
2820(50) keV0.97(7) ms(20−)
177
Ta
73104176.944472(4)56.56(6) hβ+177Hf7/2+
177m1
Ta
73.36(15) keV410(7) ns9/2−
177m2
Ta
186.15(6) keV3.62(10) µs5/2−
177m3
Ta
1355.01(19) keV5.31(25) µs21/2−
177m4
Ta
4656.3(5) keV133(4) µs49/2−
178
Ta
73105177.945778(16)9.31(3) minβ+178Hf1+
178m1
Ta
100(50)# keV2.36(8) hβ+178Hf(7)−
178m2
Ta
1570(50)# keV59(3) ms(15−)
178m3
Ta
3000(50)# keV290(12) ms(21−)
179
Ta
73106178.9459295(23)1.82(3) yEC179Hf7/2+
179m1
Ta
30.7(1) keV1.42(8) µs(9/2)−
179m2
Ta
520.23(18) keV335(45) ns(1/2)+
179m3
Ta
1252.61(23) keV322(16) ns(21/2−)
179m4
Ta
1317.3(4) keV9.0(2) msIT179Ta(25/2+)
179m5
Ta
1327.9(4) keV1.6(4) µs(23/2−)
179m6
Ta
2639.3(5) keV54.1(17) ms(37/2+)
180
Ta
73107179.9474648(24)8.152(6) hEC (86%)180Hf1+
β (14%)180W
180m1
Ta
77.1(8) keVObservationally stable[n 9][n 10]9−1.2(2)×10−4
180m2
Ta
1452.40(18) keV31.2(14) µs15−
180m3
Ta
3679.0(11) keV2.0(5) µs(22−)
180m4
Ta
4171.0+X keV17(5) µs(23, 24, 25)
181
Ta
73108180.9479958(20)Observationally stable[n 11]7/2+0.99988(2)
181m1
Ta
6.238(20) keV6.05(12) µs9/2−
181m2
Ta
615.21(3) keV18(1) µs1/2+
181m3
Ta
1485(3) keV25(2) µs21/2−
181m4
Ta
2230(3) keV210(20) µs29/2−
182
Ta
73109181.9501518(19)114.43(3) dβ182W3−
182m1
Ta
16.263(3) keV283(3) msIT182Ta5+
182m2
Ta
519.572(18) keV15.84(10) min10−
183
Ta
73110182.9513726(19)5.1(1) dβ183W7/2+
183m
Ta
73.174(12) keV107(11) ns9/2−
184
Ta
73111183.954008(28)8.7(1) hβ184W(5−)
185
Ta
73112184.955559(15)49.4(15) minβ185W(7/2+)#
185m
Ta
1308(29) keV>1 ms(21/2−)
186
Ta
73113185.95855(6)10.5(3) minβ186W(2−,3−)
186m
Ta
1.54(5) min
187
Ta
73114186.96053(21)#2# min
[>300 ns]
β187W7/2+#
188
Ta
73115187.96370(21)#20# s
[>300 ns]
β188W
189
Ta
73116188.96583(32)#3# s
[>300 ns]
7/2+#
190
Ta
73117189.96923(43)#0.3# s
This table header & footer:

Tantalum-180m

The nuclide 180m
Ta
(m denotes a metastable state) is one of a very few nuclear isomers which are more stable than their ground states. Although it is not unique in this regard (this property is shared by bismuth-210m (210mBi) and americium-242m (242mAm), among other nuclides), it is exceptional in that it is observationally stable: no decay has ever been observed. In contrast, 180
Ta
has a half-life of only 8 hours.

180m
Ta
has sufficient energy to decay in three ways: isomeric transition to the ground state of 180
Ta
, beta decay to 180
W
, or electron capture to 180
Hf
. However, no radioactivity from any of these theoretically possible decay modes has ever been observed. As of 2023, the half-life of 180mTa is calculated from experimental observation to be at least 2.9×1017 (290 quadrillion) years.[8][9][10] The very slow decay of 180m
Ta
is attributed to its high spin (9 units) and the low spin of lower-lying states. Gamma or beta decay would require many units of angular momentum to be removed in a single step, so that the process would be very slow.[11]

Because of this stability, 180m
Ta
is a primordial nuclide, the only naturally occurring nuclear isomer (excluding short-lived radiogenic and cosmogenic nuclides). It is also the rarest primordial nuclide in the Universe observed for any element which has any stable isotopes. In an s-process stellar environment with a thermal energy kBT = 26 keV (i.e. a temperature of 300 million kelvin), the nuclear isomers are expected to be fully thermalized, meaning that 180Ta rapidly transitions between spin states and its overall half-life is predicted to be 11 hours.[12]

It is one of only five stable nuclides to have both an odd number of protons and an odd number of neutrons, the other four stable odd-odd nuclides being 2H, 6Li, 10B and 14N.[13]

References