5-cell honeycomb

4-simplex honeycomb
(No image)
TypeUniform 4-honeycomb
FamilySimplectic honeycomb
Schläfli symbol{3[5]}
Coxeter diagram
4-face types{3,3,3}
t1{3,3,3}
Cell types{3,3}
t1{3,3}
Face types{3}
Vertex figure
t0,3{3,3,3}
Symmetry×2, {3[5]}
Propertiesvertex-transitive

In four-dimensional Euclidean geometry, the 4-simplex honeycomb, 5-cell honeycomb or pentachoric-dispentachoric honeycomb is a space-filling tessellation honeycomb. It is composed of 5-cells and rectified 5-cells facets in a ratio of 1:1.

Structure

Cells of the vertex figure are ten tetrahedrons and 20 triangular prisms, corresponding to the ten 5-cells and 20 rectified 5-cells that meet at each vertex. All the vertices lie in parallel realms in which they form alternated cubic honeycombs, the tetrahedra being either tops of the rectified 5-cell or the bases of the 5-cell, and the octahedra being the bottoms of the rectified 5-cell.[1]

Alternate names

  • Cyclopentachoric tetracomb
  • Pentachoric-dispentachoric tetracomb

Projection by folding

The 5-cell honeycomb can be projected into the 2-dimensional square tiling by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

A4 lattice

The vertex arrangement of the 5-cell honeycomb is called the A4 lattice, or 4-simplex lattice. The 20 vertices of its vertex figure, the runcinated 5-cell represent the 20 roots of the Coxeter group.[2][3] It is the 4-dimensional case of a simplectic honeycomb.

The A*
4
lattice[4] is the union of five A4 lattices, and is the dual to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-cell

= dual of

Related polytopes and honeycombs

The tops of the 5-cells in this honeycomb adjoin the bases of the 5-cells, and vice versa, in adjacent laminae (or layers); but alternating laminae may be inverted so that the tops of the rectified 5-cells adjoin the tops of the rectified 5-cells and the bases of the 5-cells adjoin the bases of other 5-cells. This inversion results in another non-Wythoffian uniform convex honeycomb. Octahedral prisms and tetrahedral prisms may be inserted in between alternated laminae as well, resulting in two more non-Wythoffian elongated uniform honeycombs.[5]

This honeycomb is one of seven unique uniform honeycombs[6] constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

A4 honeycombs
Pentagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycomb diagrams
a1[3[5]] (None)
i2[[3[5]]] ×2  1,  2,  3,

 4,  5,  6

r10[5[3[5]]] ×10  7

Rectified 5-cell honeycomb

Rectified 5-cell honeycomb
(No image)
TypeUniform 4-honeycomb
Schläfli symbolt0,2{3[5]} or r{3[5]}
Coxeter diagram
4-face typest1{33}
t0,2{33}
t0,3{33}
Cell typesTetrahedron
Octahedron
Cuboctahedron
Triangular prism
Vertex figuretriangular elongated-antiprismatic prism
Symmetry ×2, {3[5]}
Propertiesvertex-transitive

The rectified 4-simplex honeycomb or rectified 5-cell honeycomb is a space-filling tessellation honeycomb.

Alternate names

  • small cyclorhombated pentachoric tetracomb
  • small prismatodispentachoric tetracomb

Cyclotruncated 5-cell honeycomb

Cyclotruncated 5-cell honeycomb
(No image)
TypeUniform 4-honeycomb
FamilyTruncated simplectic honeycomb
Schläfli symbolt0,1{3[5]}
Coxeter diagram
4-face types{3,3,3}
t{3,3,3}
2t{3,3,3}
Cell types{3,3}
t{3,3}
Face typesTriangle {3}
Hexagon {6}
Vertex figure
Tetrahedral antiprism
[3,4,2+], order 48
Symmetry ×2, {3[5]}
Propertiesvertex-transitive

The cyclotruncated 4-simplex honeycomb or cyclotruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be seen as a birectified 5-cell honeycomb.

It is composed of 5-cells, truncated 5-cells, and bitruncated 5-cells facets in a ratio of 2:2:1. Its vertex figure is a tetrahedral antiprism, with 2 regular tetrahedron, 8 triangular pyramid, and 6 tetragonal disphenoid cells, defining 2 5-cell, 8 truncated 5-cell, and 6 bitruncated 5-cell facets around a vertex.

It can be constructed as five sets of parallel hyperplanes that divide space into two half-spaces. The 3-space hyperplanes contain quarter cubic honeycombs as a collection facets.[7]

Alternate names

  • Cyclotruncated pentachoric tetracomb
  • Small truncated-pentachoric tetracomb

Truncated 5-cell honeycomb

Truncated 4-simplex honeycomb
(No image)
TypeUniform 4-honeycomb
Schläfli symbolt0,1,2{3[5]} or t{3[5]}
Coxeter diagram
4-face typest0,1{33}
t0,1,2{33}
t0,3{33}
Cell typesTetrahedron
Truncated tetrahedron
Truncated octahedron
Triangular prism
Vertex figuretriangular elongated-antiprismatic pyramid
Symmetry ×2, {3[5]}
Propertiesvertex-transitive

The truncated 4-simplex honeycomb or truncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cyclocantitruncated 5-cell honeycomb.

Alaternate names

  • Great cyclorhombated pentachoric tetracomb
  • Great truncated-pentachoric tetracomb

Cantellated 5-cell honeycomb

Cantellated 5-cell honeycomb
(No image)
TypeUniform 4-honeycomb
Schläfli symbolt0,1,3{3[5]} or rr{3[5]}
Coxeter diagram
4-face typest0,2{33}
t1,2{33}
t0,1,3{33}
Cell typesTruncated tetrahedron
Octahedron
Cuboctahedron
Triangular prism
Hexagonal prism
Vertex figureBidiminished rectified pentachoron
Symmetry ×2, {3[5]}
Propertiesvertex-transitive

The cantellated 4-simplex honeycomb or cantellated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cycloruncitruncated 5-cell honeycomb.


Alternate names

  • Cycloprismatorhombated pentachoric tetracomb
  • Great prismatodispentachoric tetracomb

Bitruncated 5-cell honeycomb

Bitruncated 5-cell honeycomb
(No image)
TypeUniform 4-honeycomb
Schläfli symbolt0,1,2,3{3[5]} or 2t{3[5]}
Coxeter diagram
4-face typest0,1,3{33}
t0,1,2{33}
t0,1,2,3{33}
Cell typesCuboctahedron

Truncated octahedron
Truncated tetrahedron
Hexagonal prism
Triangular prism

Vertex figuretilted rectangular duopyramid
Symmetry ×2, {3[5]}
Propertiesvertex-transitive

The bitruncated 4-simplex honeycomb or bitruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cycloruncicantitruncated 5-cell honeycomb.

Alternate names

  • Great cycloprismated pentachoric tetracomb
  • Grand prismatodispentachoric tetracomb

Omnitruncated 5-cell honeycomb

Omnitruncated 4-simplex honeycomb
(No image)
TypeUniform 4-honeycomb
FamilyOmnitruncated simplectic honeycomb
Schläfli symbolt0,1,2,3,4{3[5]} or tr{3[5]}
Coxeter diagram
4-face typest0,1,2,3{3,3,3}
Cell typest0,1,2{3,3}
{6}x{}
Face types{4}
{6}
Vertex figure
Irr. 5-cell
Symmetry ×10, [5[3[5]]]
Propertiesvertex-transitive, cell-transitive

The omnitruncated 4-simplex honeycomb or omnitruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be seen as a cyclosteriruncicantitruncated 5-cell honeycomb..

It is composed entirely of omnitruncated 5-cell (omnitruncated 4-simplex) facets.

Coxeter calls this Hinton's honeycomb after C. H. Hinton, who described it in his book The Fourth Dimension in 1906.[8]

The facets of all omnitruncated simplectic honeycombs are called permutohedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).

Alternate names

  • Omnitruncated cyclopentachoric tetracomb
  • Great-prismatodecachoric tetracomb

A4* lattice

The A*
4
lattice is the union of five A4 lattices, and is the dual to the omnitruncated 5-cell honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-cell.[9]

= dual of

Alternated form

This honeycomb can be alternated, creating omnisnub 5-cells with irregular 5-cells created at the deleted vertices. Although it is not uniform, the 5-cells have a symmetry of order 10.

See also

Regular and uniform honeycombs in 4-space:

Notes

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 134
  • Klitzing, Richard. "4D Euclidean tesselations"., x3o3o3o3o3*a - cypit - O134, x3x3x3x3x3*a - otcypit - 135, x3x3x3o3o3*a - gocyropit - O137, x3x3o3x3o3*a - cypropit - O138, x3x3x3x3o3*a - gocypapit - O139, x3x3x3x3x3*a - otcypit - 140
  • Affine Coxeter group Wa(A4), Quaternions, and Decagonal Quasicrystals, Mehmet Koca, Nazife O. Koca, Ramazan Koc (2013) arXiv:1209.1878
SpaceFamily / /
E2Uniform tiling{3[3]}δ333Hexagonal
E3Uniform convex honeycomb{3[4]}δ444
E4Uniform 4-honeycomb{3[5]}δ55524-cell honeycomb
E5Uniform 5-honeycomb{3[6]}δ666
E6Uniform 6-honeycomb{3[7]}δ777222
E7Uniform 7-honeycomb{3[8]}δ888133331
E8Uniform 8-honeycomb{3[9]}δ999152251521
E9Uniform 9-honeycomb{3[10]}δ101010
E10Uniform 10-honeycomb{3[11]}δ111111
En-1Uniform (n-1)-honeycomb{3[n]}δnnn1k22k1k21