Аномальный магнитный момент

Аномальный магнитный момент — отклонение величины магнитного момента элементарной частицы от значения, предсказываемого квантовомеханическим релятивистским уравнением движения частицы[1]. В квантовой электродинамике аномальный магнитный момент электрона и мюона вычисляется методом радиационных поправок[2] (пертурбативным методом), в квантовой хромодинамике магнитные моменты сильно взаимодействующих частиц (адронов) вычисляются методом операторного разложения[3] (непертурбативным методом).

Значение для электрона

Магнитный момент электрона вычислен с высокой точностью. Его теоретическая величина может быть представлена как разложение в ряд по степеням постоянной тонкой структуры и (на 1978 год) даётся формулой[2]:

где  — магнитный момент электрона из теории Дирака (магнетон Бора),  — постоянная тонкой структуры.

Эксперимент (2003 год) дает следующее значение магнитного момента электрона[4]:

 , c относительной погрешностью

Аномальный магнитный момент частицы со спином удобно выражать через т. н. аномалию . Для электрона экспериментальные и теоретические значения аномального магнитного момента согласуются с высокой точностью, экспериментальное значение , теоретическое значение  [1].

Значение для мюона

Теоретическое значение магнитного момента для мюона в первом приближении дается формулой[5]:

Наиболее точное теоретическое значение аномального магнитного момента мюона:

aμSM = 116591804(51)×10−11

Наиболее точное экспериментальное значение аномального магнитного момента мюона:

aμexp = 116592059(22)×10−11

Расхождение между экспериментальным и теоретическим значениями aμ возможно является неизвестным эффектом физики за пределами Стандартной модели.

Значение для тау-лептона

Согласно прогнозам Стандартной модели, аномальный магнитный дипольный момент тау-лептона должен быть равен

,

в то время как наилучшая экспериментально измеренная оценка находится в пределах

.

Очень короткое время жизни тау-лептона (2,9⋅10−13 с) является серьезным техническим препятствием для проведения высокоточного измерения .

Значения для нейтрона и протона

Собственный магнитный момент для протона по модифицированному уравнению Дирака должен равняться ядерному магнетону В действительности он равен [6].

У нейтрона согласно уравнению Дирака не должно быть магнитного момента, поскольку нейтрон не несёт электрического заряда, но опыт показывает, что магнитный момент существует и приблизительно равен  с относительной погрешностью [4].

Аномальные магнитные моменты протона и нейтрона возникают из-за того, что протон и нейтрон в действительности состоят из электрически заряженных кварков.

Отношение магнитных моментов нейтрона и протона объясняется кварковой теорией[7].

Теоретические значения магнитных моментов протона и нейтрона в рамках теории КХД, хорошо согласующиеся с экспериментальными данными, были получены Б. Л. Иоффе и А. В. Смилгой в 1983 году[3]. Они составляют (в единицах ):

для протона:

для нейтрона:

где  — вакуумное среднее кваркового поля (кварковый конденсат), определяемое методами алгебры токов из экспериментальных данных по распаду пиона[8][9].

Магнитный момент кварка

Магнитный момент кварка в раз превышает «магнетон кварка» , где  — «приведённая масса» кварка,  — масса кварка,  — масса протона,  — глубина потенциальной ямы для кварка в нуклоне. Величина , в согласии с экспериментальными данными по электромагнитным распадам[10].

Примечания