Тензор энергии-импульса

Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи[1] и определяющий взаимодействие этих полей с гравитационным полем.

Тензор энергии-импульса является дальнейшим релятивистским обобщением понятий энергии и импульса классической механики сплошной среды. Близким к нему понятием-обобщением является 4-вектор энергии-импульса частицы в специальной теории относительности.

Компоненты тензора энергии-импульса

Тензор энергии-импульса может быть записан в виде действительной симметричной матрицы 4x4:

В нём обнаруживаются следующие физические величины:

  • T00 — объёмная плотность энергии. Как правило, она должна быть положительной, однако теоретически допускается существование локальных пространственных областей с отрицательной плотностью энергии. В частности, подобную область можно создать с помощью эффекта Казимира[2].
  • T10, T20, T30 — компоненты импульса плотности, умноженные на c.
  • T01, T02, T03 — компоненты потока энергии (вектора Пойнтинга), делённые на c. В силу симметрии Tμν соблюдается равенство: T = Tμ0
  • Подматрица 3 x 3 из чисто пространственных компонент

есть 3-мерный тензор плотности потока импульса, или тензор напряжений со знаком минус.

Таким образом, компоненты тензора энергии-импульса имеют размерность ML−1T−2 (как у давления или плотности энергии).

Частные случаи

В механике жидкости диагональные её компоненты соответствуют давлению, а прочие составляющие — тангенциальным усилиям (напряжениям или в старой терминологии — натяжениям), вызванным вязкостью.

Для жидкости в покое тензор энергии-импульса сводится к диагональной матрице , где есть плотность массы, а  — гидростатическое давление.

  • В простом случае пылевидной материи тензор энергии-импульса записывается как

где  — плотность массы (покоя),  — компоненты 4-скорости — записано также для простейшего случая, когда все пылевые частицы движутся с одинаковой скоростью хотя бы локально, а если последнее не так, выражение надо ещё суммировать (интегрировать) по скоростям.

Канонический тензор энергии-импульса

В специальной теории относительности физические законы одинаковы во всех точках пространства-времени, поэтому трансляции 4-координат не должны изменять уравнений движения поля. Таким образом, согласно теореме Нётер, бесконечно малым пространственно-временным трансляциям должен соответствовать сохраняющийся нётеровский поток, который в данном случае называется каноническим ТЭИ.

Для лагранжиана (плотности функции Лагранжа) , зависящего от полевых функций и их первых производных, но не зависящего от координат, функционал действия будет инвариантен относительно трансляций:

Из теоремы Нётер будет следовать закон сохранение канонического ТЭИ (записан в галилеевых координатах)

который имеет вид

Канонический ТЭИ в полностью контравариантном виде имеет форму

Этот тензор неоднозначен. Свойство неоднозначности можно использовать для приведения, вообще говоря, несимметричного тензора к симметризованному виду добавлением тензорной величины где тензор антисимметричен по двум последним индексам . Действительно, для симметризованного ТЭИ

автоматически следует закон сохранения

Метрический тензор энергии-импульса

В общей теории относительности так называемый метрический ТЭИ выражается через вариационную производную по метрическому тензору в точке пространства-времени от инвариантной относительно замен координат лагранжевой плотности функционала действия:

где Этот тензор энергии-импульса очевидно симметричен. В уравнения Эйнштейна метрический ТЭИ входит в качестве внешнего источника гравитационного поля:

где  — тензор Риччи,  — скалярная кривизна. Для этого тензора в силу инвариантности действия относительно координатных подстановок справедлив дифференциальный закон сохранения в виде

Тензор энергии-импульса в классической электродинамике

В классической электродинамике тензор энергии-импульса электромагнитного поля в Международной системе единиц (СИ) имеет вид:

Пространственные компоненты образуют трёхмерный тензор, который называют максвелловским тензором напряжений[3] или тензором натяжений Максвелла[4].

В ковариантной форме можно записать:

Тензор энергии-импульса в квантовой теории поля

См. также

Примечания

Литература

🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации