Теория множеств

Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов[⇨], поэтому изначальная форма теории известна как наивная теория множеств[⇨]. В XX веке теория получила существенное методологическое развитие, были созданы несколько вариантов аксиоматической теории множеств[⇨], обеспечивающие универсальный математический инструментарий, в связи с вопросами измеримости множеств тщательно разработана дескриптивная теория множеств[⇨].

Теория множеств стала основой многих разделов математики — общей топологии, общей алгебры, функционального анализа и оказала существенное влияние на современное понимание предмета математики[1]. В первой половине XX века теоретико-множественный подход был привнесён и во многие традиционные разделы математики, в связи с чем стал широко использоваться в преподавании математики, в том числе в школах. Однако использование теории множеств для логически безупречного построения математических теорий осложняется тем, что она сама нуждается в обосновании своих методов рассуждения. Более того, все логические трудности, связанные с обоснованием математического учения о бесконечности, при переходе на точку зрения общей теории множеств приобретают лишь бо́льшую остроту[2].

Начиная со второй половины XX века представление о значении теории и её влияние на развитие математики заметно снизились за счёт осознания возможности получения достаточно общих результатов во многих областях математики и без явного использования её аппарата, в частности, с использованием теоретико-категорного инструментария (средствами которого в теории топосов обобщены практически все варианты теории множеств). Тем не менее нотация теории множеств стала общепринятой во всех разделах математики вне зависимости от использования теоретико-множественного подхода. На идейной основе теории множеств в конце XX века создано несколько обобщений[⇨], в том числе теория нечётких множеств, теория мультимножеств (используемые в основном в приложениях), теория полумножеств[en] (развиваемая в основном чешскими математиками).

Ключевые понятия теории[⇨]: множество (совокупность объектов произвольной природы), отношение принадлежности элементов множествам, подмножество, операции над множествами, отображение множеств, взаимно-однозначное соответствие, мощность (конечная, счётная, несчётная), трансфинитная индукция.

Одна из визуализаций трёхмерного варианта канторова множества — нигде не плотного совершенного множества

История

Предпосылки

Множества, в том числе и бесконечные, в неявной форме фигурировали в математике со времён Древней Греции: например, в том или ином виде рассматривались отношения включения множеств всех рациональных, целых, натуральных, нечётных, простых чисел. Зачатки идеи о равномощности множеств встречаются у Галилея: рассуждая о соответствии между числами и их квадратами, он обращает внимание на неприменимость аксиомы «целое больше части» к бесконечным объектам (парадокс Галилея)[3].

Первое представление об актуально бесконечном множестве относят к работам Гаусса начала 1800-х годов, опубликованным в его «Арифметических исследованиях»[4], в которых, вводя сравнения на множестве рациональных чисел, он обнаруживает классы эквивалентности (классы вычетов) и разбивает всё множество на эти классы, отмечая их бесконечность и взаимное соответствие, рассматривает бесконечное множество решений как единую совокупность, классифицирует бинарные квадратичные формы ( ) в зависимости от определителя и рассматривает этот бесконечный набор классов как бесконечные совокупности объектов нечисловой природы, предполагает возможность выбирать из классов эквивалентностей по одному объекту-представителю всего класса[5]: использует методы, характерные для теоретико-множественного подхода, не использовавшиеся явно в математике до XIX века. В более поздних работах Гаусс, рассматривая совокупность комплексных чисел с рациональными вещественной и мнимой частью, говорит о вещественных, положительных, отрицательных, чисто мнимых целых числах как её подмножествах[6]. Однако бесконечные множества или классы как самостоятельные объекты исследования Гауссом явно не выделялись, более того, Гауссу принадлежат высказывания против возможности использования актуальной бесконечности в математических доказательствах[7].

Более отчётливое представление о бесконечных множествах проявляется в работах Дирихле, в курсе лекций 1856—1857 годов[8], построенном на основе гауссовых «Арифметических исследований». В работах Галуа, Шёмана и Серре по теории функциональных сравнений 1820—1850-х годов также намечаются элементы теоретико-множественного подхода, которые обобщил Дедекинд в 1857 году, явно сформулировавший в качестве одного из выводов необходимость рассмотрения целой системы бесконечно многих сравнимых чисел как единого объекта, общие свойства которого равным образом присущи всем его элементам, а систему бесконечно многих несравнимых классов уподобляет ряду целых чисел[9]. Отдельные понятия теории множеств можно встретить в трудах Штейнера и Штаудта 1830—1860-х годов по проективной геометрии: практически весь предмет в значительной степени зависит от представления о взаимно-однозначном соответствии, ключевом для теории множеств, однако в проективной геометрии на такие соответствия накладывались дополнительные ограничения (сохранение некоторых геометрических соотношений). В частности, Штейнер явно вводит понятие несчётного множества для множества точек на прямой и множества лучей в пучке и оперирует с их несчётными подмножествами, а в работе 1867 года вводит понятие мощности как характеристики множеств, между которыми возможно установить проективное соответствие (Кантор позднее указывал, что заимствовал само понятие и термин у Штейнера, обобщив проективное соответствие до взаимно-однозначного)[10].

Наиболее близкие к наивной теории множеств Кантора представления содержатся в трудах Больцано[11], прежде всего, в работе «Парадоксы бесконечного»[en], опубликованной после смерти автора в 1851 году, в которой рассматриваются произвольные числовые множества, и для их сравнения явно определено понятие взаимно-однозначного соответствия, и сам термин «множество» (нем. menge) также впервые систематически использован в этой работе. Однако, работа Больцано носит в большей степени философский характер, нежели математический, в частности, в ней нет чёткого разграничения между мощностью множества и понятием величины или порядка бесконечности, и сколь-нибудь формальной и целостной математической теории в этих представлениях нет[12]. Наконец, теории вещественного числа Вейерштрасса, Дедекинда и Мерэ, созданные в конце 1850-х годов и опубликованные в начале 1860-х во многом перекликаются с идеями наивной теории множеств в том смысле, что рассматривают континуум как множество, образованное из рациональных и иррациональных точек[13].

Наивная теория множеств

Георг Кантор в 1870 году
Схема доказательства счётности множества рациональных чисел
Схематическая идея доказательства теоремы Кантора — Бернштейна

Основным создателем теории множеств в наивном её варианте является немецкий математик Георг Кантор, к созданию абстракции точечного множества подтолкнули работы 1870—1872 годов по развитию теории тригонометрических рядов (продолжавшие труды Римана), в которых вводит понятие предельной точки, близкое к современному[14] и пытается с его помощью классифицировать «исключительные множества» (множества точек расходимости ряда, возможно бесконечные)[15]. Заинтересовавшись вопросами равномощности множеств, в 1873 году Кантор обнаруживает счётность множества рациональных чисел и решает отрицательно[en] вопрос о равномощности множеств целых и вещественных чисел (последний результат публикует в 1874 году по настоянию Вейерштрасса[16][17]. В 1877 году Кантор доказывает взаимно-однозначное соответствие между и (для любого ). Первыми результатами Кантор делится в переписке с Дедекиндом и Вейерштрассом, которые отвечают благосклонной критикой и замечаниями к доказательствам, и начиная с 1879 года вплоть до 1884 года публикует шесть статей в Mathematische Annalen с результатами исследований бесконечных точечных множеств[18][19].

В 1877 году Дедекинд публикует статью «О числе классов идеалов конечного поля», в которой явно в символическом виде оперирует с множествами — полями, модулями, идеалами, кольцами, и использует для них отношение включения (используя знаки «<» и «>»), операции объединения (со знаком «+») и пересечения (с инфиксом «−»), и, кроме того, фактически приходит к алгебре множеств, указывая на двойственность операций объединения и пересечения, в обозначениях Дедекинда:

,
,

в последующих своих работах многократно используя этот результат[20]. В публикации 1878 года о равномощности континуумов разного числа измерений, Кантор использует теоретико-множественные операции, ссылаясь на работу Дедекинда. Кроме того, в этой же работе впервые в явном виде введено понятие мощности множества, доказана счётность всякого бесконечного подмножества счётного множества, а конечные поля алгебраических чисел предложены как примеры счётных множеств. Результат Кантора о равномощности континуумов разного числа измерений привлёк широкое внимание математиков, и уже в том же году последовало несколько работ (Люрот[de], Томе[de], Нетто) с неудачными попытками доказательства невозможности одновременной непрерывности и взаимной однозначности отображения континуумов различных размерностей[21] (точное доказательство этого факта дал Брауэр в 1911 году).

В 1880 году Кантор формулирует две ключевых идеи теории множеств — понятие о пустом множестве и метод трансфинитной индукции. Начиная с 1881 года методами Кантора начинают пользоваться другие математики: Вольтерра, Дюбуа-Реймон, Бендиксон, Гарнак, в основном в связи с вопросами об интегрируемости функций[22]. В работе 1883 года Кантор даёт исторически первое формальное определение континуума, используя введённые им понятия совершенного множества и плотности множества (отличающиеся от современных, используемых в общей топологии, но принципиально сходных с ними), а также строит классический пример нигде не плотного совершенного множества (известный как канторово множество)[23], а также в явном виде формулирует континуум-гипотезу (предположение об отсутствии промежуточных мощностей между счётным множеством и континуумом, её недоказуемость в рамках ZFC показана Коэном в 1963 году).

С 1885—1895 годы работы по созданию наивной теории множеств получили развитие прежде всего в трудах Дедекинда (Кантор в течение этих 10 лет публикует лишь одну небольшую работу из-за болезни). Так, в книге «Что такое числа и для чего они служат?»[24] (где также впервые построена аксиоматизация арифметики, известная как арифметика Пеано) систематически изложены полученные к тому времени результаты теории множеств в наибольшей общности — для множеств произвольной природы (не обязательно числовых), бесконечное множество определено как взаимнооднозначное с частью себя, впервые сформулирована теорема Кантора — Бернштейна[25], изложена алгебра множеств и установлены свойства теоретико-множественных операций[26]. Шрёдер в 1895 году обращает внимание на совпадение алгебры множеств и исчисления высказываний, тем самым устанавливая глубокую связь между математической логикой и теорией множеств.

В 1895—1897 годы Кантор публикует цикл из двух работ, в целом завершающий создание наивной теории множеств[27][28].

С начала 1880-х годов, прежде всего, после публикации идей о трансфинитной индукции, теоретико-множественный подход встретил острое неприятие многими крупными математиками того времени, основными оппонентами в то время были Герман Шварц и, в наибольшей степени, Леопольд Кронекер, полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее — дело рук человеческих»). Серьёзная дискуссия развернулась и в среде теологов и философов относительно теории множеств, в основном критически относившихся к идеям об актуальной бесконечности и количественных различиях в этом понятии[29]. Тем не менее к концу 1890-х годов теория множеств стала общепризнанной, во многом этому способствовали доклады Адамара и Гурвица на Первом международном конгрессе математиков в Цюрихе (1897), в которых были показаны примеры успешного использования теории множеств в анализе, а также широкое применение теоретико-множественного инструментария уже имевшим значительное влияние в математическом сообществе Гильбертом[30].

Парадоксы

Размытость понятия множества в наивной теории, при которой допускалось построение множеств лишь по признаку сбора всех объектов, обладающих каким-либо свойством, привела к тому, что в период 1895—1925 годов была обнаружена значительная серия противоречий, внесшая серьёзные сомнения в возможность использования теории множеств как фундаментального инструмента, ситуация получила известность как «кризис оснований математики»[31].

Противоречие, к которому приводит рассмотрение множества всех порядковых чисел впервые обнаружено Кантором в 1895 году[32], переоткрыто и впервые опубликовано Бурали-Форти (итал. Cesare Burali-Forti) в 1897 году, и стало известно как парадокс Бурали-Форти[33]. В 1899 году в письме Дедекинду Кантор впервые говорит о противоречивости универсума как множества всех множеств, так как множество всех его подмножеств должно было бы быть равномощно самому себе, не удовлетворяя принципу [34], впоследствии эта антиномия стала известна как парадокс Кантора. В дальнейшей переписке Кантор предложил рассматривать собственно множества (нем. mengen), которые могут быть мыслимы как единый объект, и «многообразия» (vielheiten) для сложных конструкций, в том или ином виде эта идея нашла отражения в некоторых поздних аксиоматизациях и обобщениях[35].

Наиболее значительным противоречием, повлиявшим на дальнейшее развитие теории множеств и оснований математики в целом стал парадокс Рассела, обнаруженный около 1901 года Бертраном Расселом и опубликованный в 1903 году в монографии «Основания математики». Суть парадокса в противоречии при рассмотрении вопроса о принадлежности самому себе множества всех множеств, не включающих себя. Кроме того, примерно к тому же времени относится обнаружение таких антиномий как парадокс Ришара, парадокс Берри и парадокс Греллинга — Нельсона, показывающих противоречия при попытках использования самореференции свойств элементов при построении множеств.

В результате осмысления возникших парадоксов в сообществе математиков возникло два направления по разрешению возникших проблем: формализация теории множеств посредством подбора системы аксиом, обеспечивающей непротиворечивость при сохранении инструментальной мощи теории, второе — исключение из рассмотрения всех не поддающихся интуитивному осмыслению конструкций и методов. В рамках первого направления, начатого Цермело, Гильбертом, Бернайсом, Хаусдорфом, было создано несколько вариантов аксиоматической теории множеств[⇨] и за счёт довольно искусственных ограничений преодолены основные противоречия. Второе направление, основным выразителем которого был Брауэр, породило новое направление в математике — интуиционизм, и в той или иной мере оно было поддержано Пуанкаре, Лебегом, Борелем, Вейлем.

Аксиоматические теории множеств

Первую аксиоматизацию теории множеств в 1908 году опубликовал Цермело, центральную роль в исключении парадоксов в этой системе должна была сыграть «аксиома селекции» (нем. Aussonderung), согласно которой от свойства только тогда можно образовать множество , если из следует отношение вида [35]. В 1922 году благодаря работам Скулема и Френкеля система на базе аксиом Цермело была окончательно сформирована, включив аксиомы объёмности, существования пустого множества, пары, суммы, степени, бесконечности и с вариантами с аксиомой выбора и без неё. Эти аксиоматики получили наибольшее распространение и известны как теория Цермело — Френкеля, система с аксиомой выбора обозначается ZFC, без аксиомы выбора — ZF.

Особая роль аксиомы выбора связана с её интуитивной неочевидностью и заведомым отсутствием эффективного способа определения множества, собранного из элементов семейства. В частности Борель и Лебег считали, что доказательства, полученные с её применением, имеют другую познавательную ценность, нежели доказательства, независимые от неё, тогда как Гильберт и Хаусдорф принимали её безоговорочно, признавая за ней не меньшую степень очевидности, что и за другими аксиомами ZF[36].

Другой получивший распространение вариант аксиоматизации теории множеств был разработан фон Нейманом в 1925 году, формализован в 1930-е годы Бернайсом, и упрощён Гёделем в 1940 году (в работе по доказательству независимости континуум-гипотезы от аксиомы выбора), окончательный вариант получил известность как система аксиом фон Неймана — Бернайса — Гёделя и обозначение NBG[37].

Существует ряд прочих аксиоматизаций, среди них система Морса — Келли[en] (MK), система Крипке — Платека[en], система Тарского — Гротендика[en].

Дескриптивная теория множеств

В начале XX века в работах Лебега, Бэра, Бореля исследованы вопросы измеримости множеств. На основе этих работ в 1910—1930 годы разработана теория дескриптивных множеств, систематически изучающая внутренние свойства множеств, построенных теоретико-множественными операциями из объектов относительно простой природы — открытых и замкнутых множеств евклидова пространства, метрических пространств, метризуемых топологических пространств со счётной базой. Основной вклад в создание теории внесли Лузин, Александров, Суслин, Хаусдорф. С 1970-х годов разрабатываются обобщения дескриптивной теории множеств на случай более общих топологических пространств.

Основные понятия

Диаграмма Венна, показывающая все пересечения графем заглавных букв греческого, русского и латинского алфавитов
Декартово произведение

В основе теории множеств лежат первичные понятия: множество и отношение принадлежности множества (обозначается как [38] — « есть элемент множества », « принадлежит множеству »). Пустое множество, обычно обозначается символом  — множество, не содержащее ни одного элемента. Подмножество и надмножество — соотношения включения одного множества в другое (обозначаются соответственно и для нестрогого включения и и  — для строгого).

Над множествами определены следующие операции:

  • объединение, обозначается как  — множество, содержащее все элементы из и ,
  • разность, обозначается как , реже  — множество элементов , не входящих в ,
  • дополнение, обозначается как или  — множество всех элементов, не входящих в (в системах, использующих универсальное множество),
  • пересечение, обозначается как  — множество из элементов, содержащихся как в , так и в ,
  • симметрическая разность, обозначается как , реже  — множество элементов, входящих только в одно из множеств — или .

Объединение и пересечение также часто рассматривают над семействами множеств, обозначаются и и составляют, соответственно, объединение всех множеств, входящих в семейство и пересечение всех множеств, входящих в семейство.

Объединение и пересечение коммутативны, ассоциативны и идемпотентны. В зависимости от выбора системы аксиом и наличия дополнения алгебра множеств (относительно объединения и пересечения) может образовывать дистрибутивную решётку, полную дистрибутивную решётку, булеву алгебру. Для визуализации операций над множествами используются диаграммы Венна.

Декартово произведение множеств и  — множество всех упорядоченных пар элементов из и : . Отображение множества в множество теории множеств рассматривается как бинарное отношение — подмножество  — с условием единственности соответствия первого элемента второму: .

Множество подмножеств — множество всех подмножеств данного множества, обозначается или (так как соответствует множеству отображений из в ).

Мощность множества (кардинальное число) — характеристика количества элементов множества, формально определяется как класс эквивалентности над множествами, между которыми можно установить взаимно-однозначное соответствие, обозначается или . Мощность пустого множества равна нулю, для конечных множеств — целое число, равное количеству элементов. Над кардинальными числами, в том числе характеризующими бесконечные множества, можно установить отношение порядка, мощность счётного множества обозначается (алеф — первая буква еврейского алфавита), является наименьшей из мощностей бесконечных множеств, мощность континуума обозначается или , континуум-гипотеза — предположение о том, что между счётной мощностью и мощностью континуума нет промежуточных мощностей.[39]

Представление порядковых чисел до

Если кардинальное число характеризует класс эквивалентности множеств относительно возможности установить взаимно-однозначное соответствие, то порядковое число (ординал) — характеристика классов эквивалентности вполне упорядоченных множеств относительно биективных соответствий, сохраняющих отношение полного порядка. Строятся ординалы посредством введения арифметики порядковых чисел (с операциями сложения и умножения), порядковое число конечных множеств совпадает с кардиналом (обозначается соответствующим натуральным числом), порядковое число множества всех натуральных чисел с естественным порядком обозначается как , далее конструируются числа:

,

после чего вводятся -числа:

.

Множество всех - и -чисел — счётных ординалов — обладает мощностью .[40]

Обобщения

Средствами теории категорий, зачастую противопоставляемой теории множеств и с инструментальной, и с дидактической точек зрения, Ловер и Тирни (англ. Miles Tierney) в 1970 году создали теорию топосов, изучаемый ею объект — элементарный топос — построен по принципу схожести с поведением множеств в теоретико-множественном понимании, элементарными топосами удалось представить практически все варианты теории множеств.

Теория нечётких множеств — расширение теории множеств, предложенное в 1960-х годах Лотфи Заде[41] в рамках концепции нечёткой логики, в нечёткой теории вместо отношения принадлежности элементов к множеству рассматривается функция принадлежности со значениями в интервале : элемент чётко не принадлежит множеству если функция его принадлежности равна нулю, чётко принадлежит — если единице, в остальных случаях отношение принадлежности считается нечётким. Применяется в теории информации, кибернетике, информатике.

Теория мультимножеств[42], в применении к теории сетей Петри называемая теорией комплектов, рассматривает в качестве основного понятия наборы элементов произвольной природы, в отличие от множества, допускающие присутствие нескольких экземпляров одного и того же элемента, отношение включения в этой теории заменено функцией числа экземпляров:  — целое число вхождений элемента в мультимножество , при объединении комплектов число экземпляров элементов берётся по максимуму вхождений ( ), при пересечении — по минимуму ( )[43]. Используется в теоретической информатике, искусственном интеллекте, теории принятия решений.

Альтернативная теория множеств[en] — теория, развиваемая чехословацкими математиками с 1970-х годов, в основном в работах Петра Вопенки (чеш. Petr Vopěnka)[44], основывающаяся на чёткой формализации множества как объекта, индуктивно построимого из пустого множества и заведомо существующих элементов, для свойств объектов, допускающих рассмотрения их в целой совокупности, вводится понятие классов, а для изучения подклассов множеств используется концепция полумножеств[en].

В культуре

«Теоретико-множественные» часы в Берлине показывают время 9:32

В 1960—1970-е годы в рамках теории музыки была создана собственная теория множеств[en], предоставляющая средства чрезвычайно обобщённого описания музыкальных объектов (звуков с их высотами, динамикой, длительностью), взаимоотношения между ними и операции над их группами (такими как транспозиция, обращение). Однако связь с математической теорией множеств более чем опосредованная, и, скорее, терминологическая и культурная: в музыкальной теории множеств рассматриваются только конечные объекты и каких-то существенных теоретико-множественных результатов или значительных конструкций не используется; гораздо в большей степени в этой теории задействованы аппараты теории групп и комбинаторики[45].

Также в большей степени под культурным, нежели содержательным влиянием теории множеств немецким дизайнером Биннингером (нем. Dieter Binninger) в 1975 году были созданы так называемые «теоретико-множественные» часы (нем. Mengenlehreuhr) (также известны как берлинские часы, нем. Berlin-Uhr), вошедшие в Книгу рекордов Гиннесса как первое устройство, использующее пятеричный принцип для отображения времени посредством цветных светящихся индикаторов (первый и второй ряд индикаторов сверху показывает часы, третий и четвёртый — минуты; каждый светящийся индикатор соответствует пяти часам для первого ряда, одному часу для второго ряда, пяти минутам для третьего ряда и одной минуте для четвёртого ряда). Часы установлены в берлинском торгово-офисном комплексе Europa-Center.

Примечания

Литература

🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации