Falcon 9 ([ˈfælkən naɪn], falcon с англ. — «сокол») — семейство одноразовых и частично многоразовых ракет-носителей тяжёлого класса серии Falcon американской компании SpaceX. Falcon 9 состоит из двух ступеней и использует в качестве компонентов топлива керосин марки RP-1 (горючее) и жидкий кислород (окислитель). Цифра «9» в названии обозначает количество жидкостных ракетных двигателей Merlin, установленных на первой ступени ракеты-носителя.

Falcon 9
Falcon 9
Запуск Falcon 9 Block 5 со спутником Bangabandhu-1 (11 мая 2018)
Общие сведения
Страна США
СемействоFalcon
Назначениеракета-носитель
РазработчикSpaceX
ИзготовительSpaceX
Стоимость запуска
  • Новая: 67 млн $[1]
  • Б/У: ~50 млн $[2]
Основные характеристики
Количество ступеней2
Длина (с ГЧ)
  • FT: 70 м
  • v1.1: 68,4 м
  • v1.0: 54,9 м
Диаметр3,7 м
Стартовая масса
  • FT: 549 т
  • v1.1: 506 т
  • v1.0: 318 т
Масса полезной нагрузки
 • на НОО
  • FT: 22 800 кг без возвращения первой ступени (17 400 кг с возвращением)
  • v1.1: 13 150 кг
  • v1.0: 9000 кг
 • на ГПО
  • FT: 8300 кг без возвращения первой ступени (5500 кг с возвращением)
  • v1.1: 4850 кг
  • v1.0: 3400 кг
 • на МарсFT: 4020 кг
История запусков
Состояниедействующая
Места запуска
Число запусков
  • 230
    • FT: 210
    • v1.1: 15
    • v1.0: 5
 • успешных
  • 228
    • FT: 210
    • v1.1: 14
    • v1.0: 4
 • неудачных1 (v1.1, CRS-7)
 • частично
00неудачных
1 (v1.0, CRS-1)
Первый запуск
Последний запуск5 июня 2023 (SpaceX CRS-28)
История посадок
Посадкапервой ступени
Места посадкиПосадочная зона 1,
Посадочная зона 4,
платформы ASDS
Число посадок196
 • успешных187
 • на землю17 (FT)
 • на платформу74 (FT)
 • неудачных9
 • на землю1 (FT)
 • на платформу
  • 8
    • FT: 5
    • v1.1: 3
Первая ступень (Falcon 9 FT (Block 5))
Сухая масса~22,2 т
Стартовая масса~431,7 т
Маршевые двигатели9 × Merlin 1D+
Тягауровень моря: 7686 кН
вакуум: 8227 кН
Удельный импульсуровень моря: 282 с
вакуум: 311 с
Время работы162 с
Горючеекеросин
Окислительжидкий кислород
Вторая ступень (Falcon 9 FT (Block 5))
Сухая масса~4 т
Стартовая масса~111,5 т
Маршевый двигательMerlin 1D+ Vacuum
Тягавакуум: 981 кН
Удельный импульсвакуум: 348 с
Время работы397 с
Горючеекеросин
Окислительжидкий кислород
Логотип Викисклада Медиафайлы на Викискладе

Первая ступень Falcon 9 может быть повторно использована, на неё установлено оборудование для возврата и вертикального приземления на посадочную площадку или плавающую платформу autonomous spaceport drone ship. 22 декабря 2015 года, после запуска на орбиту 11 спутников Orbcomm-G2, первая ступень ракеты-носителя Falcon 9 FT впервые успешно приземлилась на площадку Посадочной зоны 1. 8 апреля 2016 года, в рамках миссии SpaceX CRS-8, первая ступень ракеты Falcon 9 FT впервые в истории ракетостроения успешно приземлилась на морскую платформу «Of Course I Still Love You». 30 марта 2017 года, та же ступень, после технического обслуживания, была запущена повторно в рамках миссии SES-10 и снова успешно приземлилась на морскую платформу. Всего в 2017—2019 годах было осуществлено 24 повторных запуска первой ступени. В 2020 году, в 21 из 26 запусков первая ступень использовалась повторно, одна из ступеней использовалась 5 раз в течение года и две ступени были запущены в седьмой раз. В 2021 году, только в двух запусках из 31 использовалась новая первая ступень, одна из ступеней была запущена в одиннадцатый раз.

Falcon 9 используется для запусков геостационарных коммерческих спутников связи, научно-исследовательских космических аппаратов, грузового космического корабля Dragon 2 в рамках программы Commercial Resupply Services по снабжению Международной космической станции, а также для запуска пилотируемого корабля Crew Dragon. Рекордной по массе полезной нагрузкой, выведенной на низкую опорную орбиту (НОО), является связка из 54 спутников Starlink версии 1.5 суммарным весом в 16 700 килограмм[3]. Рекордом на геопереходной орбите (ГПО), является Intelsat 35e — 6761 кг[a].

Общая конструкция

Первая ступень

Использует керосин RP-1 в качестве горючего и жидкий кислород в качестве окислителя.Построена по стандартной схеме, когда бак окислителя располагается над баком с горючим. Днище между баками общее. Оба бака выполнены из алюминиево-литиевого сплава, добавление в сплав лития увеличивает удельную прочность материала и позволяет уменьшить массу конструкции[4]. Стенки бака окислителя несущие, стенки бака горючего усилены шпангоутами и продольными балками в связи с тем, что на нижнюю часть первой ступени приходится наибольшая наседающая нагрузка. Окислитель поступает в двигатели через трубопровод, проходящий через центр топливного бака по всей его длине. Для наддува баков используется сжатый гелий[5][6].

Первая ступень Falcon 9 использует девять жидкостных ракетных двигателей Merlin[7]. В зависимости от версии ракеты-носителя разнятся версия двигателей и их компоновка. Для запуска двигателей используют самовоспламеняющуюся смесь триэтилалюминия и триэтилборана (TEA-TEB)[6].

Первую и вторую ступени соединяет переходный отсек, оболочка которого выполнена из алюминиево-углепластикового композита. Он закрывает двигатель второй ступени и содержит механизмы разделения ступеней. Механизмы разделения — пневматические, в отличие от большинства ракет, использующих для подобных целей пиропатроны. Такой тип механизма позволяет обеспечить его дистанционное испытание и контроль, повышая надёжность разделения ступеней[6][7].

Вторая ступень

Является, по сути, укороченной копией первой ступени, с использованием тех же материалов, производственных инструментов и технологических процессов. Это позволяет существенно уменьшить расходы на производство и обслуживание ракеты-носителя и, как следствие, снизить стоимость её запуска. Аналогично первой ступени, баки изготовлены из алюминиево-литиевого сплава, стенки бака горючего подкреплены продольным и поперечным силовым набором, стенки бака окислителя без подкрепления. Также использует в качестве компонентов топлива керосин и жидкий кислород[6].

На второй ступени используется один жидкостный ракетный двигатель Merlin Vacuum[7][8]. Отличается соплом со значительно увеличенной степенью расширения для оптимизации работы двигателя в вакууме. Двигатель может быть перезапущен многократно для доставки полезной нагрузки на различные рабочие орбиты. Вторая ступень также использует для запуска двигателя самовоспламеняющуюся смесь TEA-TEB. Для повышения надёжности система зажигания двукратно резервирована[7].

Для управления пространственным положением в фазе свободного орбитального полёта, а также для контроля вращения ступени во время работы основного двигателя используется система ориентации, газореактивные двигатели которой работают на сжатом азоте[5][6].

Бортовые системы

Каждая ступень оборудована авионикой и бортовыми полётными компьютерами, которые контролируют все параметры полёта ракеты-носителя. Вся используемая авионика собственного производства SpaceX и выполнена с трёхкратным резервированием. Для повышения точности вывода полезной нагрузки на орбиту в дополнение к инерциальной навигационной системе используется GPS. Полётные компьютеры работают под управлением операционной системы Linux с программным обеспечением, написанным на языке C++[6].

Каждый двигатель Merlin оснащён собственным контроллером, следящим за параметрами двигателя в течение всего времени работы. Контроллер состоит из трёх процессорных блоков, которые постоянно проверяют показатели друг друга с целью повышения отказоустойчивости системы[6].

Ракета-носитель Falcon 9 способна успешно завершить полёт даже при аварийном выключении двух из девяти двигателей первой ступени[9][10]. В такой ситуации полётные компьютеры выполняют перерасчёт программы полёта, и оставшиеся двигатели работают дольше для достижения необходимой скорости и высоты. Аналогичным образом меняется полётная программа второй ступени. Так, на 79-й секунде полёта SpaceX CRS-1 двигатель номер 1 первой ступени был аварийно остановлен после срыва его обтекателя и последовавшего падения рабочего давления. Космический корабль Dragon был успешно выведен на расчётную орбиту за счёт увеличенного времени работы остальных восьми двигателей, хотя выполнявший роль вторичной нагрузки спутник Orbcomm-G2 был выведен на более низкую орбиту и сгорел в атмосфере через 4 дня[11].

Так же как и в ракете-носителе Falcon 1, последовательность запуска Falcon 9 предусматривает возможность остановки процедуры запуска на основании проверки двигателей и систем ракеты-носителя перед стартом. Для этого пусковая площадка оборудована четырьмя специальными зажимами, которые некоторое время удерживают ракету уже после запуска двигателей на полную мощность. При обнаружении неполадок запуск останавливается, и проводится откачка топлива и окислителя из ракеты. Таким образом, для обеих ступеней предусмотрена возможность повторного использования и проведения стендовых испытаний перед полётом[12]. Подобная система также использовалась для «Шаттла» и «Сатурна-5».

Головной обтекатель

Внешние видеофайлы
 Испытание разделения половин головного обтекателя

Конический головной обтекатель располагается на вершине второй ступени и защищает полезную нагрузку от аэродинамических, температурных и акустических воздействий во время полёта в атмосфере. Состоит из двух половин и отделяется сразу после выхода ракеты из плотных слоёв атмосферы. Механизмы отделения полностью пневматические. Обтекатель, как и переходной отсек, изготавливается из ячеистой, сотовидной алюминиевой основы с многослойным углепластиковым покрытием. Высота стандартного обтекателя Falcon 9 составляет 13,1 м, диаметр внешний 5,2 м, диаметр внутренний 4,6 м, вес около 1750 кг[5][6][13]. Каждая створка обтекателя оборудована азотными двигателями для управления ориентацией в вакууме и системой управления парафойлом, обеспечивающими плавное управляемое приводнение в заданной точке с точностью 50 м. Чтобы избежать контакта створки с водой, SpaceX пытается поймать её в сетку площадью 40000 кв. футов[14] (~ 3716 м2), натянутую подобно батуту над быстроходными судами. Для этой задачи SpaceX использует подрядчиков, уже имеющих опыт в области управляемой посадки парашютов с грузом до 10 000 кг[15]. Обтекатель не используется при запуске космического корабля Dragon.

Варианты Falcon 9

Полная линейка ракет-носителей Falcon 9.

Ракета-носитель с момента первого запуска прошла через две существенные модификации. Первая версия, Falcon 9 v1.0, запускалась пять раз с 2010 по 2013 год, ей на смену пришла версия Falcon 9 v1.1, выполнившая 15 запусков; использование её было завершено в январе 2016 года. Следующая версия, Falcon 9 Full Thrust (FT), впервые запущенная в декабре 2015 года, использует переохлаждённые компоненты топлива и максимальную тягу двигателей для увеличения грузоподъёмности ракеты-носителя на 30 %. В мае 2018 года был выполнен первый запуск финальной версии ракеты-носителя, Falcon 9 Block 5, которая включила в себя многочисленные улучшения, направленные в основном на ускорение и упрощение повторного использования первой ступени, а также на повышение надёжности, с целью сертификации для пилотируемых полётов.

Falcon 9 v1.0

Первая версия ракеты-носителя, также известная как Block 1. Было осуществлено 5 запусков данной версии с 2010 по 2013 год.

Первая ступень Falcon 9 v1.0 использовала 9 двигателей Merlin 1C. Двигатели располагались рядно, по схеме 3 на 3. Суммарная тяга двигателей составляла около 3800 кН на уровне моря, и около 4340 кН в вакууме, удельный импульс на уровне моря — 266 с, в вакууме — 304 с[16]. Номинальное время работы первой ступени — 170 с.

Вторая ступень использовала 1 двигатель Merlin 1C Vacuum, с тягой 420 кН и удельным импульсом в вакууме — 336 с. Номинальное время работы второй ступени — 345 с[16]. В качестве системы ориентации ступени использовались 4 двигателя Draco[6].

Высота ракеты составляла — 54,9 м, диаметр — 3,7 м. Стартовая масса ракеты — около 318 т[16][17].

Стоимость запуска на 2013 год составляла 54—59,5 млн $[17].

Масса выводимого груза на НОО — до 9000 кг и на ГПО — до 3400 кг[16]. Фактически, ракета использовалась только для запусков космического корабля Dragon на низкую опорную орбиту.

Во время запусков проводились испытания на повторное использование обеих ступеней ракеты-носителя. Изначальная стратегия использования лёгкого теплозащитного покрытия для ступеней и парашютной системы себя не оправдала (процесс посадки даже не доходил до раскрытия парашютов, ступень разрушалась при вхождении в плотные слои атмосферы[18]), и была заменена на стратегию управляемого приземления с использованием собственных двигателей[19][20].

Планировался так называемый Block 2, версия ракеты с улучшенными двигателями Merlin 1C, повышающими суммарную тягу ракеты-носителя до 4940 кН на уровне моря, с массой выводимого груза на НОО — до 10 450 кг и на ГПО — до 4540 кг[17][21]. Впоследствии планируемые наработки были перенесены в новую версию 1.1.

Использование версии 1.0 было прекращено в 2013 году с переходом на Falcon 9 v1.1.

Схема расположения двигателей. Falcon 9 v1.0 (слева) и v1.1 (справа)

Falcon 9 v1.1

Вторая версия ракеты-носителя. Первый запуск состоялся 29 сентября 2013 года.

Баки для топлива и окислителя, как первой, так и второй ступени ракеты-носителя Falcon 9 v1.1 были значительно удлинены по сравнению с предыдущей версией 1.0.[6]

Первая ступень использовала 9 двигателей Merlin 1D, с увеличенной тягой и удельным импульсом. Новый тип двигателя получил способность к дросселированию со 100 % до 70 %, и, возможно, ещё ниже. Изменено расположение двигателей: вместо трёх рядов по три двигателя используется компоновка с центральным двигателем и расположением остальных по окружности. Центральный двигатель также установлен немного ниже остальных. Схема получила название Octaweb, она упрощает общее устройство и процесс сборки двигательного отсека первой ступени[22]. Суммарная тяга двигателей — 5885 кН на уровне моря и увеличивается до 6672 кН в вакууме, удельный импульс на уровне моря — 282 с, в вакууме — 311 с. Номинальное время работы первой ступени — 180 с. Высота первой ступени — 45,7 м, сухая масса ступени — около 23 т (около 26 т для (R)-модификации). Масса помещаемого топлива — 395 700 кг, из которых 276 600 кг — жидкий кислород и 119 100 кг — керосин[6].

Вторая ступень использовала 1 двигатель Merlin 1D Vacuum, тяга 801 кН с удельным импульсом в вакууме — 342 с. Номинальное время работы второй ступени — 375 с. Вместо двигателей Draco применена система ориентации использующая сжатый азот. Высота второй ступени — 15,2 м, сухая масса ступени — 3900 кг. Масса помещаемого топлива — 92 670 кг, из которых 64 820 кг — жидкий кислород и 27 850 кг — керосин[6].

Высота ракеты увеличилась до 68,4 м, диаметр не изменился — 3,7 м. Стартовая масса ракеты выросла до 506 т[6].

Заявленная масса выводимого груза на НОО — 13 150 кг и на ГПО — 4850 кг[6].

Стоимость запуска составляла 56,5 млн $ в 2013 году[23], 61,2 млн $ в 2015[24].

Последний запуск данной версии состоялся 17 января 2016 года со стартовой площадки SLC-4E на базе Ванденберг, на орбиту успешно доставлен спутник Jason-3[25]. Всего ракета совершила 15 запусков и единственной неудачей стала миссия SpaceX CRS-7.

Дальнейшие запуски производились с помощью ракеты-носителя Falcon 9 FT.

Falcon 9 v1.1(R)

Falcon 9 v1.1(R) (R от англ. reusable — повторно используемая) является модификацией версии 1.1 для управляемого приземления первой ступени.

Модифицированные элементы первой ступени:

  1. Первая ступень оснащена четырьмя раскладывающимися посадочными опорами, используемыми для мягкой посадки[5][26]. Суммарная масса стоек достигает 2100 кг[6];
  2. Установлено навигационное оборудование для выхода ступени к точке приземления;
  3. Три двигателя из девяти предназначены для торможения и получили систему зажигания для повторного запуска;
  4. Титановые решётчатые рули и блок газовых сопел системы ориентации (под флагом)
    На верхней части первой ступени устанавливаются складные решётчатые рули для стабилизации вращения и улучшения управляемости на этапе снижения, особенно в то время, когда двигатели будут отключены (в целях снижения массы, для рулей использовалась незамкнутая гидравлическая система, не требующая тяжёлых насосов высокого давления)[6]. Решётчатые рули были испытаны на прототипе F9R Dev1 в середине 2014 года и впервые были использованы во время девятого полёта Falcon 9 v1.1 в миссии SpaceX CRS-5. В более поздних модификациях следующей версии первой ступени, Full Thrust, гидравлическая система была улучшена до замкнутой, а алюминиевые рули заменены на титановые, что упростило многоразовое использование. Новые рули немного длиннее и тяжелее своих алюминиевых предшественников, повышают возможности контроля ступени, выдерживают температуру без необходимости нанесения абляционного покрытия и могут быть использованы неограниченное количество раз, без межполётного обслуживания[27][28][29]
  5. В верхней части ступени установлена система ориентации — набор газовых сопел, использующих энергию сжатого азота[5][6], для контроля положения ступени в пространстве до выпуска решётчатых рулей. На обеих сторонах ступени расположен блок, каждый по 4 сопла, направленные вперёд, назад, в сторону и вниз. Сопла, направленные вниз используются перед запуском трёх двигателей Merlin при манёврах торможения ступени в космосе, производимый импульс опускает топливо в нижнюю часть баков, где оно захватывается насосами двигателей[30][31].

Falcon 9 Full Thrust

Обновлённая и улучшенная версия ракеты-носителя, призванная обеспечить возможность возврата первой ступени после запуска полезной нагрузки на любую орбиту, как низкую опорную, так и геопереходную. Новая версия, неофициально известная под названием Falcon 9 FT (Full Thrust[32]; с англ. — «полная тяга») или Falcon 9 v1.2, пришла на смену версии 1.1.

Все вернувшиеся первые ступени Falcon 9 имеют полосатый вид. Белая краска темнеет из-за сажи от двигателей и высокой температуры. Но на кислородном баке образуется изморозь, которая защищает его и он остаётся белым.

Основные изменения: модифицировано крепление двигателей (Octaweb); посадочные стойки и первая ступень усилены, для соответствия возросшей массе ракеты; изменено устройство решётчатых рулей; композитный отсек между ступенями стал длиннее и прочнее; увеличена длина сопла двигателя второй ступени; добавлен центральный толкатель для повышения надёжности и точности расстыковки ступеней ракеты-носителя[33].

Топливные баки верхней ступени увеличены на 10 %, за счёт чего общая длина ракеты-носителя увеличилась до 70 м[7].

Стартовая масса выросла до 549 054 кг[7] за счёт увеличения вместимости топливных компонентов, что было достигнуто благодаря использованию переохлаждённого окислителя.

В новой версии ракеты-носителя компоненты топлива охлаждаются до более низких температур. Жидкий кислород охлаждается с −183 °C до −207 °C, что позволит повысить плотность окислителя на 8—15 %. Керосин охлаждается с 21 °C до −7 °C, его плотность увеличится на 2,5 %. Повышенная плотность компонентов позволяет поместить большее количество топлива в топливные баки, что, в сумме с возросшей тягой двигателей, значительно увеличивает характеристики ракеты[34].

Первая ступень Falcon 9 FT после посадки доставлена в сборочный ангар LC-39A и готовится к испытательному прожигу. Краска местами облупилась, но серьёзных повреждений нет[35].

В новой версии используются модифицированные двигатели Merlin 1D, работающие на полной тяге (в предыдущей версии тяга двигателей была намеренно ограничена), что позволило значительно увеличить показатели тяги обеих ступеней ракеты-носителя[33].

Так, тяга первой ступени на уровне моря выросла до 7607 кН, в вакууме — до 8227 кН. Номинальное время работы ступени уменьшилось до 162 секунд.

Тяга второй ступени в вакууме возросла до 934 кН, удельный импульс в вакууме — 348 с, время работы двигателя увеличилось до 397 секунд[7].

Максимальная полезная нагрузка, выводимая на низкую опорную орбиту (без возвращения первой ступени), составляет 22 800 кг, при возвращении первой ступени уменьшится на 30—40 %[36]. Максимальная полезная нагрузка, выводимая на геопереходную орбиту, составляет 8300 кг, при возвращении первой ступени на плавающую платформу — 5500 кг. Полезная нагрузка, которую можно будет вывести на траекторию перелёта к Марсу, составит до 4020 кг[37].

Первый запуск версии FT состоялся 22 декабря 2015 года, при возвращении к полётам ракеты-носителя Falcon 9 после аварии миссии SpaceX CRS-7. Были успешно выведены на целевую орбиту 11 спутников Orbcomm-G2, а также впервые состоялась успешная посадка первой ступени на посадочную площадку на мысе Канаверал[30].

Данная версия ракеты-носителя прошла через ряд из пяти существенных модернизаций, именуемых в компании как «Block». Улучшения последовательно вводились с 2016 по 2018 год. Так, первая ступень с серийным номером B1021, которая впервые была использована повторно при запуске спутника SES-10 в марте 2017 года, относилась к Block 2[38].

Falcon 9 Block 4

Falcon 9 Block 4 представляет собой переходную модель между Falcon 9 Full Thrust (Block 3) и Falcon 9 Block 5. Первый полёт состоялся 14 августа 2017, миссия CRS-12.

Всего было произведено 7 первых ступеней этой версии, которые выполнили 12 запусков (5 ступеней использовались повторно). Последний запуск Falcon 9 со ступенью Block 4 состоялся 29 июня 2018 года, в ходе миссии снабжения SpaceX CRS-15. Все последующие запуски выполняются ракетами версии Block 5[39].

Falcon 9 Block 5

Crew Dragon, установленный на Falcon 9 Block 5 перед миссией SpaceX Crew-3

Окончательная версия ракеты-носителя, нацеленная на повышение надёжности и упрощение повторного использования. Последующих серьёзных модификаций ракеты не планируется, хотя возможны незначительные улучшения в процессе эксплуатации. Ожидается, что будет построено 30—40[40] первых ступеней Falcon 9 Block 5, которые совершат порядка 300 запусков в течение 5 лет до завершения её эксплуатации. Первая ступень Block 5 рассчитана на «десять и более» запусков без межполётного обслуживания[41][42].

Первый запуск состоялся 11 мая 2018 года в 20:14 UTC, в ходе которого успешно выведен на геопереходную орбиту первый бангладешский геостационарный спутник связи Bangabandhu-1[43].

В октябре 2016 года Илон Маск впервые рассказал про версию Falcon 9 Block 5, где «много мелких улучшений, которые в сумме очень важны, а наиболее важными являются повышенная тяга и улучшенные посадочные стойки». В январе 2017 года Илон Маск добавил, что модель Block 5 «значительно повышает тягу и лёгкость повторного использования». С 2020 года Block 5 используется NASA для доставки людей и грузов на МКС при помощи космического корабля Dragon 2.

Основные изменения в Block 5[38][42]:

  • Тяга двигателя Merlin 1D увеличена на 8 % в сравнении с Block 4, с 780 кН (176 000 фунт-сил) до около 854 кН (190 000 фунт-сил) на уровне моря[44][45]. Суммарная тяга девяти двигателей первой ступени — 7686 кН на уровне моря. Тяга двигателя второй ступени Merlin 1D+ Vacuum увеличена на 5 % до 981 кН (220 000 фунт-сил)[44]. Во время первого запуска этот двигатель был дросселирован до тяговых показателей предыдущей версии.
  • По требованию NASA были переработаны причастные к взрыву ракеты 1 сентября 2016 года композитные резервуары высокого давления (COPV)  (англ.), использующиеся в системах наддува обеих ступеней, и перепроектированы турбонасосы на двигателях Merlin 1D после того, как на некоторых из них были обнаружены микротрещины, появляющиеся после полёта или испытаний[46]). Также проведены многочисленные улучшения для соответствия требованиям NASA для ракеты, используемой для пилотируемых полётов.
  • Octaweb, алюминиевая структура для закрепления 9 двигателей первой ступени, которая ранее была цельносварной, теперь сболчена. Конструкция существенно усилена для повышения надёжности, для её изготовления используется алюминиевый сплав серии 7000 вместо серии 2000.
  • Промежуточная секция между ступенями, посадочные опоры и защитный кожух электропроводки, проходящий по всей длине ракеты — теперь чёрного цвета, покрыты гидрофобным жаростойким материалом собственного производства SpaceX, не требующим дополнительной покраски.
  • Новые складывающиеся посадочные опоры, которые ранее приходилось полностью снимать, оборудованы внутренним фиксатором, который может легко открываться и закрываться повторно. Отсутствуют внешние фиксаторы опор, удерживающие их во время запуска, все механизмы спрятаны внутри опоры.
  • На постоянной основе будут использоваться титановые решётчатые рули, впервые испытанные 25 июня 2017 года при запуске Iridium NEXT-2 и на боковых ускорителях Falcon Heavy во время дебютного запуска в феврале 2018 года. Применявшиеся ранее алюминиевые рули больше использовать не будут.
  • Жаростойкий щит в основании ракеты-носителя, для защиты при возвращении ступени в плотные слои атмосферы, теперь выполнен из титана и имеет активное водное охлаждение, для упрощения повторного использования. Ранее применялся щит из композитных материалов.
  • Обновлена вся авионика, улучшены бортовые компьютеры и контроллеры двигателей. Установлена новая, усовершенствованная инерциальная измерительная система.
  • Вторая версия головного обтекателя, спроектированного для возвращения и повторного использования.

Falcon Heavy

Falcon Heavy (heavy с англ. — «тяжёлый») — двухступенчатая ракета-носитель сверхтяжёлого класса, предназначенная для вывода космических аппаратов на низкую опорную, геопереходную, геостационарную и гелиоцентрическую орбиты. Её первая ступень представляет собой структурно усиленный центральный блок, выполненный на основе первой ступени ракеты-носителя Falcon 9 FT, модифицированный для закрепления двух боковых ускорителей. В качестве боковых ускорителей используются многоразовые первые ступени ракеты-носителя Falcon 9 с композитным защитным конусом на верхушке[47][48]. Вторая ступень Falcon Heavy аналогична используемой на ракете-носителе Falcon 9. Все миссии Falcon Heavy, кроме первой, будут использовать ускорители Block 5[45].

Стоимость вывода на ГПО спутника массой до 8 т составит 90 млн $ (2016 год)[37]. Для одноразового варианта ракеты-носителя масса выводимого груза на НОО составит до 63,8 т, на ГПО — 26,7 т, до 16,8 т на Марс и до 3,5 т на Плутон[47].

Первый запуск Falcon Heavy состоялся в ночь на 7 февраля 2018 года[49]. На разработку и создание первой версии ракеты было потрачено более 500 млн долларов США из собственных средств SpaceX[50].

Возвращение и посадка первой ступени

Внешние видеофайлы
 Возвращение первой ступени в инфракрасном телескопе NASA (после запуска SpaceX CRS-4)
 Возвращение и посадка на платформу с бортовой камеры ступени (запуск Thaicom 8)

Разогнав вторую ступень с полезной нагрузкой, первая ступень отключает двигатели и отделяется на высоте около 70 км, примерно через 2,5 минуты после запуска ракеты-носителя, точные значения времени, высоты и скорости разделения зависят от полётного задания, в частности от целевой орбиты (НОО или ГПО), массы полезной нагрузки, и места посадки ступени. При запусках на низкую околоземную орбиту скорость ступени при разделении составляет около 6000 км/ч (1700 м/с; 4,85 Махов)[30], при запусках на геопереходную орбиту, когда требуется посадка на находящуюся в океане плавающую платформу ASDS, скорость достигает 8350 км/ч (2300 м/с; 6,75 Махов)[51]. После расстыковки первая ступень ракеты-носителя с помощью системы ориентации осуществляет небольшой манёвр ухода от выхлопа двигателя второй ступени и разворачивается двигателями вперёд для подготовки к трём основным манёврам торможения[33]:

1. Импульс перехода на обратный курс

При возврате к месту запуска на посадочную площадку, вскоре после расстыковки ступень использует продолжительное (~40 с) включение трёх двигателей для изменения направления своего движения на противоположное, выполняя сложную петлю с пи́ковой высотой около 200 км, при максимальном отдалении от стартовой площадки до 100 км в горизонтальном направлении[30].

Схема возврата ступени на платформу

В случае посадки на плавающую платформу после запуска на низкую околоземную орбиту, ступень по инерции продолжает движение по баллистической траектории приблизительно до высоты 140 км. При приближении к апогею производится торможение тремя двигателями для сброса горизонтальной скорости и задания направления к платформе, находящейся приблизительно в 300 км от места запуска. Длительность работы двигателей составляет около 30—40 секунд[52][53].

При запуске спутника на геопереходную орбиту первая ступень работает дольше, используя больше топлива для набора более высокой скорости до расстыковки, резерв оставшегося топлива ограничен и не позволяет выполнить сброс горизонтальной скорости. После расстыковки ступень двигается по баллистической траектории (без торможения) по направлению к платформе, расположенной в 660 км от места запуска[51][54].

2. Импульс вхождения в атмосферу

В процессе подготовки к вхождению в плотные слои атмосферы первая ступень осуществляет торможение путём включения трёх двигателей на высоте около 70 км, что обеспечивает вход в плотные слои атмосферы на приемлемой скорости[33]. В случае запуска на геопереходную орбиту, в связи с отсутствием предыдущего манёвра торможения, скорость ступени при вхождении в атмосферу вдвое (2 км/с против 1 км/с), а тепловая нагрузка в 8 раз больше соответствующих значений при запуске на низкую околоземную орбиту[51]. Нижняя часть первой ступени и посадочные стойки выполнены с использованием термостойких материалов, позволяющих выдержать высокую температуру, до которой нагреваются элементы ступени при входе в атмосферу и движении в ней[33].

Продолжительность работы двигателей также разнится в зависимости от наличия достаточного резерва топлива: от более продолжительного (25—30 с) при запусках на НОО до короткого (15—17 с) для миссий на ГПО[30][51].

На этом же этапе раскрываются и начинают свою работу решётчатые рули для контроля рыскания, тангажа и вращения. На высоте около 40 км двигатели выключаются и ступень продолжает падение до достижения конечной скорости, а решётчатые рули продолжают работать до самой посадки[33].

3. Посадочный импульс

Внешние видеофайлы
 Посадка ступени на Посадочной зоне 1 (запуск Orbcomm 2)
 Первая посадка на плавающую платформу (запуск SpaceX CRS-8)
 Посадка на платформу после запуска на ГПО спутника JCSAT-14

При достаточном резерве топлива включение одного, центрального, двигателя происходит за 30 секунд до посадки и ступень замедляется, обеспечивая мягкую посадку по схеме, отработанной в рамках проекта Grasshopper. Посадочные опоры откидываются за несколько секунд до касания посадочной площадки[53].

При запусках на геопереходную орбиту, для максимально быстрого снижения скорости с меньшими затратами топлива, используют короткое, 10-секундное торможение сразу тремя двигателями. Два внешних двигателя выключаются раньше центрального и последние метры полёта ступень завершает используя один двигатель, который способен к дросселированию до 40 % от максимальной тяги[51][55][56].

Перед финальным торможением ступень не нацеливается непосредственно на платформу, чтобы избежать её повреждения в случае, если двигатель не запустится. Окончательное выруливание происходит уже после запуска двигателя.

Возвращённые ступени (слева направо: Orbcomm 2, JCSAT-14, SpaceX CRS-8)

Возвращение первой ступени уменьшает максимальную полезную нагрузку ракеты-носителя на 30—40 %[36]. Это вызвано необходимостью резервирования топлива для торможения и посадки, а также дополнительной массой посадочного оборудования (посадочные опоры, решётчатые рули, система реактивного управления и прочее).

В SpaceX ожидают, что по меньшей мере половина от всех запусков ракеты-носителя Falcon 9 будет требовать посадки первой ступени на плавающую платформу, в частности все запуски на геопереходную орбиту и за пределы земной орбиты[52][57].

В январе 2016 года, после неудачной посадки ступени в рамках миссии Jason-3, Илон Маск высказал ожидания, что 70 % попыток посадки ступени в 2016 году будут успешными, с увеличением процента успешных посадок до 90 в 2017 году[58].

Стартовые площадки

В настоящее время запуски Falcon 9 производятся с трёх пусковых площадок:

Площадка для суборбитальных полётов и испытаний:

  • полигон Макгрегор в штате Техас. Использовался для испытаний систем многоразового использования первых ступеней ракеты в рамках проекта Grasshopper[59] в 2012—2014 годах.

Посадочные площадки

Посадочная зона 1
Автономный беспилотный корабль-космопорт. Вид сверху

В соответствии с озвученной стратегией возврата и повторного использования первой ступени Falcon 9 и Falcon Heavy, компания SpaceX заключила договор аренды на использование и переоборудование двух наземных площадок, на западном и восточном побережье США[60].

  • База ВВС США на мысе Канаверал — Посадочная зона 1 (бывший стартовый комплекс LC-13); арендуется у ВВС США. Дебютная посадка первой ступени Falcon 9 была выполнена 22 декабря 2015 года. Планируется создание ещё 2-х посадочных площадок, которые позволят выполнять посадку боковых ускорителей Falcon Heavy[61].
  • База Ванденберг — Посадочная зона 4 (бывший стартовый комплекс SLC-4W); арендуется у ВВС США. Впервые посадка первой ступени Falcon 9 на этой площадке была выполнена 8 октября 2018 года.

При запусках, условия которых не дают возможности возвращения первой ступени Falcon 9 к месту запуска, посадка осуществляется на специально изготовленную плавающую платформу autonomous spaceport drone ship, которая является переоборудованной баржей. Установленные двигатели и GPS-оборудование позволяют доставить её в необходимую точку и удерживать в ней, создавая устойчивую площадку для посадки[62]. В настоящее время SpaceX имеет три такие платформы:

  • «Of Course I Still Love You» (Marmac 304, переоборудована в 2015 году), сокращенно — OCISLY, тихоокеанское побережье США, порт базирования с декабря 2015 года по июнь 2021 года — Канаверал, с июня 2021 года — Лонг-Бич;
  • «Just Read the Instructions» (Marmac 303, переоборудована в 2015 году), сокращенно — JRTI, атлантическое побережье США, порт базирования с 2015 по август 2019 года — Лос-Анджелес, с декабря 2019 года — Канаверал;
  • «A Shortfall of Gravitas» (Marmac 302, переоборудована в 2021 году), сокращенно — ASOG, атлантическое побережье США, порт базирования — Канаверал.

Стоимость пуска

Заявленная на сайте производителя цена вывода коммерческого спутника (до 5,5 т на ГПО) ракетой-носителем Falcon 9 — 67 млн $[37][К 1]. Из-за дополнительных требований, для военных и правительственных заказчиков цена запуска ракеты-носителя выше коммерческой, контракты на запуски спутников GPS для ВВС США на суммы 82,7 млн $[63][64][65], 96,5 млн $[66][67][68][69] и 290,6 млн $ (3 запуска)[70][71][72] подписаны в 2016, 2017 и 2018 годах, соответственно.

История

В ходе выступления перед сенатским комитетом по коммерции, науке и транспорту в мае 2004 года глава SpaceX Илон Маск заявил: «Долговременные планы требуют тяжёлого и, в случае наличия спроса покупателей, даже сверхтяжёлого носителя. <…> В конечном счёте, я полагаю, что цена выводимой на орбиту полезной нагрузки в 500 USD/фунт(~1100 USD/кг) и меньше вполне достижима»[73].

SpaceX формально анонсировала ракету-носитель 8 сентября 2005 года, описывая Falcon 9 как «полностью многоразовый тяжёлый носитель»[74]. Для среднего варианта Falcon 9 указывалась масса груза, выводимого на НОО, равной 9,5 т и цена 27 млн $ за полёт.

12 апреля 2007 года SpaceX объявила, что основная часть первой ступени Falcon 9 была закончена[75]. Стены баков выполнены из алюминия, отдельные части соединены сваркой трением с перемешиванием[76]. Конструкция была перевезена в центр SpaceX в Уэйко (Техас, США), где проводились стендовые огневые испытания первой ступени. Первые испытания с двумя двигателями, присоединёнными к первой ступени, производились 28 января 2008 года и закончились успешно. 8 марта 2008 года три двигателя Merlin 1C были испытаны в первый раз, 29 мая были испытаны одновременно пять двигателей и первые испытания всех девяти двигателей на первой ступени, которые проводились 31 июля и 1 августа, закончились успешно[77][78][79]. 22 ноября 2008 года все девять двигателей первой ступени ракеты-носителя Falcon 9 прошли испытания длительностью, соответствующей длительности полёта (178 с)[80].

Изначально первый полёт Falcon 9 и первый полёт ракеты-носителя с кораблём Dragon (COTS) были запланированы на конец 2008 года, но неоднократно откладывались по причине огромного количества работы, которую предстояло выполнить. Согласно утверждению Илона Маска, сложность технологических разработок и требования законодательства для запусков с мыса Канаверал сказались на сроках[81]. Это должен был быть первый запуск ракеты Falcon с эксплуатируемых космодромов.

В январе 2009 года ракета-носитель Falcon 9 была впервые установлена в вертикальном положении на стартовой площадке комплекса SLC-40 на мысе Канаверал.

22 августа 2014 года на испытательном полигоне Макгрегор (Tехас, США) в ходе испытательного полёта трёхдвигательный аппарат F9R Dev1, прототип многоразовой ракеты-носителя Falcon 9 R, через несколько секунд после старта автоматически уничтожился. В ходе испытаний ракета должна была после взлёта вернуться на стартовую площадку. Сбой в двигателях означал неизбежное падение ракеты на незапланированной территории. По словам представителя SpaceX Джона Тейлора, причиной взрыва послужила некая «аномалия», обнаруженная в двигателе. В результате взрыва никто не пострадал. Это был пятый запуск прототипа F9R Dev1[82][83].

Позднее Илон Маск уточнил, что авария произошла из-за сбойного сенсора[84], причём если бы такой сбой случился в Falcon 9, этот сенсор был бы заблокирован как сбойный, поскольку его показания противоречили данным от других сенсоров. На прототипе эта система блокирования отсутствовала.

В январе 2015 года SpaceX сообщила о намерении усовершенствовать двигатель Merlin 1D с целью увеличения его тяги. В феврале 2015 года было объявлено, что первым полётом с улучшенными двигателями станет запуск телекоммуникационного спутника SES-9, запланированный на второй квартал 2015 года[85]. В марте 2015-го Илон Маск объявил, что проводятся работы, которые позволят использовать возвращаемую первую ступень и для запусков к ГПО: увеличение тяги двигателей на 15 %, более глубокая заморозка окислителя, увеличение объёма бака верхней ступени на 10 %[86].

В октябре 2015 года было принято решение, что первыми с помощью новой версии ракеты-носителя будут запущены 11 спутников связи Orbcomm-G2. Поскольку спутники будут функционировать на низкой околоземной орбите (около 750 км), для их запуска не потребуется перезапуск второй ступени Falcon 9. Это позволило после завершения миссии перезапустить и испытать обновлённую вторую ступень без риска для полезной нагрузки. Повторный перезапуск второй ступени необходим для запуска космических аппаратов на геопереходную орбиту (например, спутника SES 9)[87].

Первая ступень в ангаре LC-39A

22 декабря 2015 года, на пресс-конференции[88] после успешной посадки первой ступени на Посадочную зону 1, Илон Маск сообщил, что приземлившаяся ступень будет доставлена в ангар горизонтальной сборки стартового комплекса LC-39A для тщательного изучения. После этого планируется короткий испытательный прожиг двигателей на стартовом столе комплекса, с целью выяснить, все ли системы находятся в хорошем состоянии. По словам Маска, эта ступень, вероятнее всего, не будет использоваться для повторных запусков, после всестороннего исследования её оставят на земле как уникальный первый экземпляр. Также он сообщил о возможности повторного запуска в 2016 году одной из приземлившихся после будущих запусков первой ступени. В начале января 2016 года Илон Маск подтвердил, что существенных повреждений ступени не обнаружено и она готова к испытательному прожигу[35][89][90].

Двигатели вернувшейся ступени (Octaweb)

16 января 2016 года на стартовом комплексе SLC-40 был проведён испытательный прожиг вернувшейся после миссии Orbcomm-G2 первой ступени Falcon 9 FT. В целом, были получены удовлетворительные результаты, но наблюдались колебания тяги двигателя № 9, возможно из-за попадания внутрь мусора. Это один из внешних двигателей, который включается при манёврах выхода на посадку. Ступень вернули на бороскопическое исследование двигателя в ангар LC-39A[91][92].

В январе 2016 года Военно-воздушные силы США сертифицировали ракету-носитель Falcon 9 FT для запусков военных и разведывательных спутников системы национальной безопасности США, что позволило SpaceX конкурировать с компанией United Launch Alliance (ULA) за государственные оборонные контракты[93].

Три вернувшиеся ступени в ангаре стартового комплекса LC-39A

8 апреля 2016 года, после запуска корабля Dragon в рамках миссии SpaceX CRS-8 совершена первая успешная посадка первой ступени Falcon 9 на плавающую платформу[52]. Посадка на плавающую платформу отличается повышенной сложностью, так как платформа меньше посадочной площадки и находится в постоянном движении из-за волн.

27 апреля 2016 года анонсирован контракт на сумму 82,7 млн $ между SpaceX и ВВС США на запуск спутника GPS-3 ракетой-носителем Falcon 9 в мае 2018 года[94][95].

6 мая 2016 года в рамках миссии JCSAT-14 произведена первая успешная посадка первой ступени на платформу после запуска спутника на геопереходную орбиту[51][96]. Профиль возвращения отличался многократно повышенной температурной нагрузкой на ступень при вхождении в плотные слои атмосферы, поэтому ступень получила наибольшие внешние повреждения по сравнению с другими двумя ранее приземлившимися[97]. Ранее посадка по подобной схеме предпринималась 4 марта 2016 года после запуска спутника SES-9, но тогда она окончилась неудачей[98].

Внешние видеофайлы
 Тестовый прожиг ступени

28 июля, на испытательном полигоне SpaceX в Техасе, проведён полноценный прожиг первой ступени Falcon 9 (серийный номер F9-0024-S1), вернувшейся после запуска спутника JCSAT-14, которую компания использует для наземных испытаний. Девять двигателей ступени работали в течение 2,5 минут, что соответствует отрезку работы первой ступени при запуске[99].

14 марта 2017 года анонсирован контракт на сумму 96,5 млн $ с ВВС США на запуск ещё одного спутника GPS-3 в феврале 2019 года[100][101].

В январе 2018 года была завершена сертификация второй категории для ракеты Falcon 9 необходимая для запуска научных космических аппаратов NASA средней степени важности[102].

В ноябре 2018 года ракета-носитель Falcon 9 прошла сертификацию третьей категории для запуска наиболее важных научных миссий NASA класса A и B[103].

16 ноября 2020 года, с космодрома на мысе Канаверал во Флориде ракета-носитель Falcon 9 стартовала с американским пилотируемым космическим кораблем Crew Dragon компании SpaceX. Корабль доставил четырёх астронавтов к Международной космической станции (МКС)[104].

8 апреля 2022 года с космического центра Джона Кеннеди стартовала ракета Falcon 9 с кораблём Crew Dragon. Он доставил на МКС первый частный экипаж в рамках миссии Axiom-1[105].

Запуски

По результатам миссии

  •   Авария в полете
  •   Авария до запуска
  •   Частичный успех
  •   Успех

По результатам посадки

  •   Неудача на воду
  •   Неудача на платформу
  •   Неудача на землю
  •   Неудача с парашютом
  •   Успех на воду
  •   Успех на платформу
  •   Успех на землю
  •   Не производилась

Ближайшие запуски

В этом разделе находится информация о последних 3 выполненных запусках, а также предварительное расписание ближайших запланированных запусков. Полный список запусков ракеты-носителя — в отдельной статье.

Дата и время (UTC)ВерсияСтартовая площадкаПолезная нагрузкаОрбитаЗаказчикРезультатПосадка
первой
ступени
Ступень
32623 апреля 2024, 22:17FT/Block 5Мыс Канаверал, SLC-40Starlink 6-53НООSpaceXУспехна платформу
B1078-9
Успешный запуск 23-х спутников Starlink версии 2.0 мини на начальную орбиту 285 x 293 км наклонением 43°. Первая ступень совершила посадку на морскую платформу JRTI, находившуюся в акватории Атлантического океана[106], что стало 300-й успешной посадкой блоков первых ступеней ракет Falcon 9 и Falcon Heavy.
32728 апреля 2024, 00:34FT/Block 5КЦ Кеннеди, LC-39AGalileo L12СООЕКАУспехне проводилась
B1060-20
Успешный запуск двух навигационных спутников GSAT0225 и GSAT0227 следующего поколения глобальной системы позиционирования Галилео[107]. Спутники массой 733 кг каждый введены на среднюю околоземную орбиту 23 616 × 23 616 км наклонением 56 градусов[108].
32828 апреля 2024, 22:08FT/Block 5Мыс Канаверал, SLC-40Starlink 6-54НООSpaceXУспехна платформу
B1076-13
Успешный запуск 23-х спутников Starlink версии 2.0 мини на начальную орбиту 285 x 293 км наклонением 43°. Первая ступень совершила посадку на морскую платформу JRTI, находившуюся в акватории Атлантического океана[109].
Дата и время (UTC)ВерсияСтартовая площадкаПолезная нагрузкаОрбитаЗаказчикРезультатПосадка
первой
ступени
Ступень

Знаковые запуски

  • 1-й, 4 июня 2010 года, дебютный запуск ракеты-носителя Falcon 9.
  • 2-й, 8 декабря 2010 года, COTS Demo 1, впервые на орбиту выведен космический корабль Dragon.
  • 3-й, 22 мая 2012 года, COTS Demo 2/3, первый полёт корабля с пристыковкой к Международной космической станции.
  • 4-й, 8 октября 2012 года, SpaceX CRS-1, первый запуск в рамках программы Commercial Resupply Services по снабжению МКС;
  • 6-й, 29 сентября 2013 года, первый запуск ракеты-носителя версии 1.1, первый запуск с головным обтекателем, а, также, первый запуск со стартового комплекса SLC-4E на авиабазе Ванденберг.
  • 7-й, 3 декабря 2013 года, SES-8, первый запуск спутника на геопереходную орбиту.
  • 9-й, 18 апреля 2014 года, SpaceX CRS-3, первое использование посадочных опор, впервые осуществлено успешное возвращение первой ступени и посадка на поверхность океана.
  • 14-й, 10 января 2015 года, SpaceX CRS-5, установлены решётчатые рули, первая попытка посадки на плавающую платформу.
  • 15-й, 11 февраля 2015 года, DSCOVR, первый запуск спутника за пределы земной орбиты, в точку L1 системы Солнце-Земля.
  • 19-й, 28 июня 2015 года, запуск в рамках миссии SpaceX CRS-7 завершился разрушением ракеты-носителя через 2,5 минуты после старта.
  • 20-й, 22 декабря 2015 года, Orbcomm 2, первый запуск ракеты-носителя версии FT, первое успешное возвращение первой ступени к месту запуска и посадка на площадке Посадочной зоны 1.
  • 23-й, 8 апреля 2016 года, SpaceX CRS-8, первая успешная посадка первой ступени на плавающую платформу «Of Course I Still Love You».
  • 24-й, 6 мая 2016 года, JCSAT-14, посадка первой ступени на платформу после запуска спутника на геопереходную орбиту.
  • 30-й, 19 февраля 2017 года, SpaceX CRS-10, первый запуск с переоборудованной площадки LC-39A Космического центра Кеннеди.
  • 32-й, 30 марта 2017 года, SES-10, повторный полёт летавшей первой ступени, успешная посадка на плавающую платформу «Of Course I Still Love You».
  • 33-й, 1 мая 2017 года, NROL-76, первый запуск для Национального разведывательного управления США.
  • 35-й, 3 июня 2017 года, SpaceX CRS-11, впервые повторно использовалась герметичная спускаемая капсула корабля Dragon, вернувшегося после миссии снабжения SpaceX CRS-4.
  • 41-й, 7 сентября 2017 года, OTV-5, первый запуск для Военно-воздушных сил США.
  • 53-й, 18 апреля 2018 года, TESS, запуск космического телескопа для NASA.
  • 54-й, 11 мая 2018 года, Bangabandhu-1, первый запуск ракеты-носителя финальной версии Block 5.
  • 57-й, 29 июня 2018 года, SpaceX CRS-15, последний запуск версии Block 4.
  • 62-й, 8 октября 2018 года, SAOCOM-1A, первая посадка ступени на площадку Посадочной зоны 4 на базе Ванденберг и 30-я успешная посадка ступени для SpaceX.
  • 64-й, 3 декабря 2018 года, SSO-A «SmallSat Express», впервые произведён третий успешный запуск и посадка одной и той же первой ступени B1046.
  • 65-й, 5 декабря 2018 года, SpaceX CRS-16, произведена аварийная мягкая посадка первой ступени на воду.
  • 66-й, 23 декабря 2018 года, GPS III-SV01, запуск первого навигационного спутника нового поколения GPS III.
  • 67-й, 11 января 2019 года, Iridium-8, последний, восьмой запуск, завершивший вывод коммуникационной спутниковой группировки Iridium NEXT.
  • 68-й, 22 февраля 2019 года, Берешит, запуск израильского лунного посадочного аппарата.
  • 69-й, 2 марта 2019 года, SpaceX DM-1, первый запуск пилотируемого космического корабля Crew Dragon к МКС (без экипажа).
  • 71-й, 24 мая 2019 года, Starlink v0.9, для Falcon 9 установлен рекорд выводимой на НОО массы полезной нагрузки в многоразовой конфигурации: 13 620 кг.
  • 75-й, 11 ноября 2019 года, Starlink-1 v1.0, впервые произведён четвёртый успешный запуск и посадка одной и той же первой ступени B1048, первое повторное использование головного обтекателя, рекорд массы выводимой полезной нагрузки — 15,6 т.
  • 83-й, 18 марта 2020 года, Starlink-5 v1.0, впервые произведён пятый запуск одной и той же первой ступени B1048, посадка не была успешной.
  • 85-й, 30 мая 2020 года, SpaceX DM-2, первый запуск пилотируемого космического корабля Crew Dragon с двумя астронавтами на борту к МКС.
  • 86-й, 4 июня 2020 года, Starlink-7 v1.0, впервые произведена пятая успешная посадка одной и той же ступени B1049, а также первая успешная посадка на платформу «Just Read The Instructions» после её перемещения в Атлантический океан.
  • 91-й, 18 августа 2020 года, Starlink-10 v1.0, впервые произведён шестой запуск и посадка одной и той же ступени B1049.
  • 98-й, 16 ноября 2020, SpaceX Crew-1, первый эксплуатационный полёт Crew Dragon по смене экипажа МКС c четырьмя астронавтами на борту.
  • 100-й, 25 ноября 2020 года, Starlink-15 v1.0, впервые произведён седьмой запуск и посадка одной и той же ступени B1049.
  • 105-й, 20 января 2021 года, Starlink-16 v1.0, впервые произведён восьмой запуск и посадка одной и той же ступени B1051. Промежуток между седьмым и восьмым запуском ступени составил 38 дней.
  • 106-й, 24 января 2021 года, Transporter-1, рекордное количество спутников, выведенных на орбиту в рамках одного запуска (143 аппарата). Предыдущий рекорд принадлежал ракете-носителю PSLV, которая вывела 104 спутника в 2017 году.
  • 111-й, 14 марта 2021 года, Starlink-21 v1.0, впервые произведён девятый запуск и посадка одной и той же ступени B1051.
  • 117-й, 9 мая 2021 года, Starlink-27 v1.0, впервые произведён десятый запуск и посадка одной и той же ступени B1051.
  • 126-й, 16 сентября 2021 года, Inspiration4, запуск первой полностью частной орбитальной миссии с 4 туристами на борту корабля Crew Dragon.
  • 129-й, 24 ноября 2021 года, DART, запуск демонстрационной миссии NASA по изменению орбиты астероида.
  • 132-й, 18 декабря 2021 года, Starlink 4-4, впервые произведён одиннадцатый запуск и посадка одной и той же ступени B1051.
  • 145-й, 19 марта 2022 года, Starlink 4-12, впервые произведён двенадцатый запуск и посадка одной и той же ступени B1051.
  • 147-й, 8 апреля 2022 года, SpaceX AX-1, запуск корабля Crew Dragon к МКС с полностью частным экипажем на борту.
  • 158-й, 17 июня 2022 года, Starlink 4-19, впервые произведён тринадцатый запуск и посадка одной и той же ступени B1060.
  • 175-й, 11 сентября 2022 года, Starlink 4-2, впервые произведён четырнадцатый запуск и посадка одной и той же ступени B1058.
  • 192-й, 17 декабря 2022 года, Starlink 4-37, впервые произведён пятнадцатый запуск и посадка одной и той же ступени B1058.
  • 238-й, 10 июля 2023 года, Starlink 6-5, впервые произведён шестнадцатый запуск и посадка одной и той же ступени B1058.
  • 257-й, 20 сентября 2023 года, Starlink 6-17, впервые произведён семнадцатый запуск и посадка одной и той же ступени B1058.
  • 269-й, 4 ноября 2023 года, Starlink 6-26, впервые произведён восемнадцатый запуск и посадка одной и той же ступени B1058.
  • 283-й, 23 декабря 2023 года, Starlink 6-32, впервые произведён девятнадцатый запуск и посадка одной и той же ступени B1058.
  • 323-й, 13 апреля 2024 года, Starlink 6-49, впервые произведён двадцатый запуск и посадка одной и той же ступени B1062.

Сравнимые ракеты-носители

Коммерческие пуски
Ракета-носительСтранаПервый запуск201020112012201320142015201620172018
Ariane 5 ЕС1996128126101210109
Протон-М Россия20018711887330[b]
Союз-2 Россия2006154586555
PSLV Индия2007[c]122213323
Falcon 9 США201000024581216
Vega ЕС2012000[d]112242
Другие[e]--7105756645
Весь рынок293234313741374041

См. также

Примечания

Комментарии
Источники

Ссылки

🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации