Силикати

Силикати су соли силикатне киселине.[1] Силикат је хемијско једињење које садржи анјонски силикатни јон. Највећи број силиката су оксиди, мада се у ову класу једињења убрајају и хексафлуоросиликати ([SiF6]2−) и други анјони. Они су најбројнија група минерала.

Основна структура (орто-)силикатних оксоанјона (SiO4−4)

Највећи број стена изграђен је од силиката. У свим силикатима се јављају стабилне групе силицијум оксида (SiO4) које граде мали јони силицијума и велики јони кисеоника. Друга карактеристична особина силиката је могућност замене у кристалној решетки јона силицијума јоном алуминијума. Такви силикати носе назив алуминосиликати. Основни састојци силиката су: кисеоник, силицијум, алуминијум, гвожђе, калцијум, магнезијум, натријум и калијум. У силикатима се могу јавити и литијум, берилијум, баријум и манган. Често се у силикатима јавља и вода, некада и водоник. У састав неких силиката улази велики број елемената тако да је њихов састав често веома сложен.

Под појмом ортосиликат подразумијева се анјон SiO44− и његова једињења. У сродству са ортосиликатима је и породица анјона (и њихових једињења) са хемијском формулоm [SiO2+n]2n−. Важни чланови ове породице су циклични и једноланчани силикати {[SiO3]2−}n те силикати који граде једињења типа {[SiO2.5]}n.[2]

Силикати сачињавају већи део Земљине коре, као и других терестријалних планета, каменитих сателита и астероида. Песак, портландски цемент и хиљаде других минерала су примери силиката. Силикатна једињења, укључујући и минерале, састоје се од силикатних анјона чији набоји су балансирани различитим катјонима. Може постојати изузетно велики број силикатних анјона, а сваки од њих може градити спојеве са многим различитим катјонима. Стога је класа ових једињења веома велика. Минерали и синтетички материјали такође спадају у ову класу.

Структурни принципи

Код огромне већине силиката, укључујући и силикатне минерале, атом Si заузима тетраедарску форму, а окружен је са четири центра кисеоника. У таквим структурама, хемијске везе према силицијуму следе правило октета. Такви тетраедри понекад се јављају као изоловани SiO44− центри, али је далеко најчешћи случај да су тетраедри везани заједно на различите начине попут парова (Si2O76−) или прстенова (Si6O1812−). Обично су силикатни анјони ланци, двоструки ланци, слојеви и тродимензионални оквири. Све те врсте имају врло слабу растворљивост у води при нормалним условима.

Распрострањеност у растворима

Силикати су врло добро проучени и описани у чврстом стању, али су знатно мање познати у растворима. Анјон SiO44− је конјугована база силикатне киселине Si(OH)4,[3] а обоје су врло слабо постојани као и сви њихови међупроизводи. Због тога раствори силиката су обично проучавани као смеше кондензованих и делимично протонованих силикатних кластера. Природа растворљивих силиката неопходна је за разумевање биоминерализације и синтезе алуминосиликата, као важних индустријских катализатора попут зеолита.[4]

Иако је тетраедар уобичајен облик координацијске геометрије за једињења силицијума, врло добро је познато да силицијум такође усваја и више координацијске бројеве. Добро познати пример виших координацијских бројева је хексафлуоросиликат (SiF62−).[5][6][7][8] Октаедарска координација са шест центара кисеоника је такође доказана. При врло високом притиску, чак и SiO2 усваја ову геометрију у минералу стисховиту, густој полиморфној силици пронађеној је у доњем плашту Земље. Ова структура такође настаје „стресом” (шоком) стена проузрокованим на пример ударом метеорита. Октаедарски Si у облику хексахидросиликата ([Si(OH)6]2−) доказан је у минералу таумаситу, доста ретком у природи, али се понекад може запазити међу другим калцијум-силикатним хидратима вештачки насталим у цементу и бетону који су изложени нападима снажних сулфата.

Врсте силиката

  • групни силикати
  • ланчани силикати
  • острвски силикати
  • прстенасти силикати
  • просторни силикати
  • слојевити силикати

Минерали силикати

У геологији и астрономији[9], појам силикат се користи за означавање врсте стена која се састоји претежно од силикатних минерала. На Земљи, јавља се веома велики број силикатних минерала чак и у ширем распону комбинација као резултат процеса који граде и мењају њену кору. Ти процеси обухватају делимично топљење, кристализацију, фракционизацију, метаморфозу, ерозију и дијагенезу. Жива бића такође доприносе силикатном циклусу у близини Земљине површине. Једна врста планктона позната као дијатомеје (кремењасте алге) граде своје егзоскелете (љуштуре) од силике.[10][11][12][13] Те љуштуре након угинућа дијатомеја су основни састојак седимената у океанским дубинама.

Силика, односно силицијум-диоксид SiO2 се понекад сматра силикатом, Силика, односно силицијум-диоксид SiO2 се понекад сматра силикатом,[14][15] мада је то посебан случај који нема негативно наелектрисање те нема „потребу” за супротним јоном. Силика се јавља у природи као минерал кварц и у облику његових полиморфа.[16][17][18][19]

Силикати су подељени према начину на који су (SiO4) тетраедри повезани на:

  • Незосиликати
    • оливин - Оливин[20] је изоморфна смеша две крајње компоненте форстерита (Mg2SiO4) и фајалита (Fe2SiO4) између којих постоје постурни прелази. Оливини су веома значајни састојци магматских стена и то групе базичних и ултрабазичних. На ниским температурама су веома нестабилни.
    • гранат - Минерали ове групе су веома распрострањени у свим врстама стијена. Разноврсни су по саставу али се могу свести на заједничку формулу: X3Y2(SiO4)3, где је X двовалентан катјон Mg2+, Fe2+, Ca2+, Mn2+, a Y тровалентан катјон Fe3+, Al3+, Cr3+. На основу присуства појединих катјона гранати образују читав низ врста: пироп, алмандин, спесартин, уваровит, гросулар, андрадит. Боја граната варира од безбојних, преко жућкастих до зеленкастих, црвених до црних.
  • Соросиликати - нпр. епидот
  • Циклосиликате, се састоје од затворених тетраедара са (TxO3x)2x или односом од 1:3. Они је јављају као трочлани (T3O9)6− и шесточлани (T6O18)12− прстенови, при чему T означава тетраедарски координирани катјон.

Берил је алумосиликат берилијума Be3Al2Si6O18. Боје је плаве или плавичастозелене. Од примеса, међутим, бива различито обојен те се разликује неколико варијетета, зелени-смарагд и плави-аквамарин спадају у драго камење.[21][22][23][24]

Турмалин

Референце

Литература

  • Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (ур.). „Quartz”. Handbook of Mineralogy (PDF). III (Halides, Hydroxides, Oxides). Chantilly, VA, US: Mineralogical Society of America. ISBN 978-0-9622097-2-7. 

Спољашње везе