حالة الأكسدة

مصطلح يشير إلى درجة تأكسد ذرة في مركب كيميائي.

حالة الأكسدة تسمى أيضاً عدد الأكسدة أو مرحلة الأكسدة، وهو مصطلح يشير إلى درجة تأكسد ذرة في مركب كيميائي. فمفهوم حالة الأكسدة هي الشحنة الكهربائية التي تكتسبها ذرة إذا كانت جميع ارتباطاتها مع عناصر أخرى من نوع الرابطة الأيونية بنسبة 100%.

وتمثل حالة الأكسدة بأرقام صحيحة قد تكون موجبة أو سالبة الإشارة وقد تكون مساوية للصفر. وفي بعض الحالات يمكن أن تكون حالة الأكسدة كسرًا مثل 8/3 للحديد في (Fe3O4).[1]

أعلى حالة أكسدة تم الإعلان عنها +9 في الكاتيون رباعي أكسيد الإريديوم (+IrO4[2] من المتوقع وجود حالة الأكسدة +10 والتي يمكن تحقيقها بواسطة البلاتين في الكاتيون رباعي البلاتين.[3] كما تتواجد درجة التأكسد +8 في رباعي أكسيد الزينون ورباعي أكسيد الروثينيوم ورباعي أكسيد الأوزميوم بينما أقل حالة أكسدة هي −5 كما هو الحال في البورون في Al3BC.[4]

زيادة حالة أكسدة ذرة خلال تفاعل كيميائي يسمى «أكسدة» وأما انخفاض حالة الأكسدة فيسمى اختزال. وتتضمن تلك التفاعلات انتقال للإلكترونات. ويعتبر اكتساب ذرة إلكترونات اختزالًا أما فقدانها إلكترونات فهو أكسدة. حالة الأكسدة للعناصر النقية تساوي صفرًا.

تحتوي معظم العناصر على أكثر من حالة أكسدة محتملة على سبيل المثال يحتوي الكربون على تسع حالات أكسدة صحيحة محتملة من −4 إلى +4.

تصف حالة الأكسدة، التي يشار إليها أحيانًا برقم الأكسدة، درجة الأكسدة (فقدان الإلكترونات) للذرة في مركب كيميائي. من الناحية المفاهيمية، فإن حالة الأكسدة، التي قد تكون موجبة أو سالبة أو صفرية، هي الشحنة الافتراضية التي يمكن أن تمتلكها الذرة إذا كانت جميع الروابط إلى ذرات العناصر المختلفة أيونية بنسبة 100٪، بدون أي مكون تساهمي. هذا ليس صحيحًا تمامًا بالنسبة للسندات الحقيقية.

استخدم أنطوان لافوازييه مصطلح الأكسدة للدلالة على تفاعل مادة مع الأكسجين. بعد ذلك بوقت طويل، تم إدراك أن المادة، عند تأكسدها، تفقد الإلكترونات، وتم توسيع المعنى ليشمل التفاعلات الأخرى التي تفقد فيها الإلكترونات، بغض النظر عما إذا كان الأكسجين متورطًا.

يتم تمثيل حالات الأكسدة عادةً بأعداد صحيحة قد تكون موجبة أو صفرية أو سالبة. في بعض الحالات، يكون متوسط حالة الأكسدة لعنصر ما هو كسر، مثل8/3 للحديد في المغنتيت Fe3O4 (انظر أدناه). تم الإبلاغ عن أعلى حالة أكسدة معروفة لتكون +9 في تيتروكسوريديوم (IX) كاتيون (IrO4+).[5] من المتوقع أنه حتى حالة الأكسدة +10 يمكن تحقيقها بواسطة البلاتين في الكاتيون PtO42+ البلاتين (X) (PtO42+).[6] أدنى حالة أكسدة هي −5، كما هو الحال بالنسبة للبورون في Al 3 قبل الميلاد.[7]

تُعرف الزيادة في حالة أكسدة الذرة، من خلال تفاعل كيميائي، بالأكسدة؛ انخفاض في حالة الأكسدة كما هو معروف لحد. تتضمن مثل هذه التفاعلات النقل الرسمي للإلكترونات: فالمكاسب الصافية في الإلكترونات هي اختزال، وخسارة صافية للإلكترونات تتأكسد. بالنسبة للعناصر النقية، تكون حالة الأكسدة صفر.

لا تمثل حالة أكسدة الذرة الشحنة «الحقيقية» لتلك الذرة، أو أي خاصية ذرية فعلية أخرى. هذا ينطبق بشكل خاص على حالات الأكسدة العالية، حيث تكون طاقة التأين المطلوبة لإنتاج أيون موجب مضاعف أكبر بكثير من الطاقات المتوفرة في التفاعلات الكيميائية. بالإضافة إلى ذلك، قد تختلف حالات أكسدة الذرات في مركب معين اعتمادًا على اختيار مقياس الكهربية المستخدم في حسابها. وبالتالي، فإن حالة أكسدة الذرة في المركب هي مجرد شكلية. ومع ذلك، فمن المهم في فهم اصطلاحات التسمية للمركبات غير العضوية. أيضًا، يمكن تفسير العديد من الملاحظات المتعلقة بالتفاعلات الكيميائية على مستوى أساسي من حيث حالات الأكسدة.

في التسمية غير العضوية، يتم تمثيل حالة الأكسدة برقم روماني يوضع بعد اسم العنصر داخل الأقواس أو كحرف مرتفع بعد رمز العنصر.

تعريف الاتحاد الدولي للكيمياء البحتة والتطبيقية (IUPAC)

نشرت IUPAC «تعريفًا شاملاً لمصطلح حالة الأكسدة (توصيات IUPAC 2016)».[8] إنه تقطير لتقرير الاتحاد الدولي للكيمياء البحتة والتطبيقية الفني «نحو تعريف شامل لحالة الأكسدة» من عام 2014.[9] تعريف الكتاب الذهبي IUPAC الحالي لحالة الأكسدة هو:

«"حالة أكسدة الذرة هي شحنة هذه الذرة بعد التقريب الأيوني لروابطها غير المتجانسة..."»

ومصطلح رقم الأكسدة مرادف تقريبًا.[10]

المبدأ الأساسي هو أن الشحنة الأيونية هي «حالة أكسدة الذرة، بعد التقريب الأيوني لروابطها»، [11] حيث يعني التقريب الأيوني، مع افتراض أن جميع الروابط أيونية. تم النظر في عدة معايير للتقريب الأيوني:

1) استقراء قطبية السند:

أ) من فرق الكهربية.
ب) من لحظة ثنائي القطب.
ج) من حسابات الشحنات الكمومية والكيميائية.

2) تخصيص الإلكترونات وفقًا لمساهمة الذرة في الترابط MO [11][12] / ولاء الإلكترون في نموذج LCAO-MO.[13]

في الرابطة بين عنصرين مختلفين، يتم تخصيص إلكترونات الرابطة لمساهمها الذري الرئيسي / كهرسلبية أعلى؛ في الرابطة بين ذرتين من نفس العنصر، يتم تقسيم الإلكترونات بالتساوي. وذلك لأن معظم مقاييس الكهربية تعتمد على حالة ارتباط الذرة، مما يجعل تعيين حالة الأكسدة حجة دائرية إلى حد ما. على سبيل المثال، قد تتحول بعض المقاييس إلى حالات أكسدة غير عادية، مثل -6 للبلاتين في PtH 4 −2، لمقاييس باولين الكهرسلبية وموليكن.[14] في بعض الأحيان، تؤدي اللحظات ثنائية القطب أيضًا إلى ظهور أرقام أكسدة غير طبيعية، كما هو الحال في CO وNO، والتي يتم توجيهها بنهايتها الإيجابية نحو الأكسجين. لذلك، فإن هذا يترك مساهمة الذرة في MO الرابطة، والطاقة المدارية الذرية، ومن الحسابات الكمومية الكيميائية للشحنات، باعتبارها المعايير الوحيدة القابلة للتطبيق مع قيم مقنعة للتقريب الأيوني. ومع ذلك، من أجل تقدير بسيط للتقريب الأيوني، يمكننا استخدام السالب الكهربية لألين، [11] حيث أن مقياس الكهربية فقط هو مستقل حقًا عن حالة الأكسدة، حيث إنه يتعلق بمتوسط التكافؤ ‐ طاقة الإلكترون للذرة الحرة:


تقرير

بينما تستخدم المستويات التمهيدية لتدريس الكيمياء حالات الأكسدة المفترضة، فإن توصية IUPAC [8] ومدخل الكتاب الذهبي يسردان خوارزميتين عامتين بالكامل لحساب حالات أكسدة العناصر في المركبات الكيميائية.

نهج بسيط دون اعتبارات الترابط

تستخدم الكيمياء التمهيدية افتراضات: يتم حساب حالة الأكسدة لعنصر في صيغة كيميائية من الشحنة الكلية وحالات الأكسدة المفترضة لجميع الذرات الأخرى.

مثال بسيط يعتمد على افتراضين:

  1. OS = +1 للهيدروجين.
  2. OS = −2 للأكسجين

حيث يشير OS إلى حالة الأكسدة. ينتج عن هذا النهج حالات أكسدة صحيحة في أكاسيد وهيدروكسيدات أي عنصر منفرد، وفي أحماض مثل H 2 SO 4 أو H 2 Cr 2 O 7. يمكن تمديد تغطيتها إما بقائمة من الاستثناءات أو عن طريق إعطاء الأولوية للمسلمات. يعمل الأخير مع H 2 O 2 حيث تترك أولوية القاعدة 1 كلا الأكسجين بحالة أكسدة −1.

قد تؤدي الافتراضات الإضافية وترتيبها إلى توسيع نطاق المركبات لتناسب نطاق الكتاب المدرسي. كمثال، خوارزمية ما بعد واحدة من العديد من الممكن في تسلسل تنازلي الأولوية:

  1. عنصر في شكل حر لديه OS = 0.
  2. في مركب أو أيون، مجموع حالات الأكسدة يساوي الشحنة الكلية للمركب أو الأيون.
  3. يحتوي الفلور في المركبات على OS = −1؛ يمتد هذا إلى الكلور والبروم فقط عندما لا يكون مرتبطًا بهالوجين أو أكسجين أو نيتروجين أخف.
  4. تحتوي معادن المجموعة 1 والمجموعة 2 في المركبات على OS = +1 و +2 على التوالي.
  5. يحتوي الهيدروجين على OS = +1 ولكنه يتبنى −1 عندما يرتبط بهيدريد معادن أو أشباه فلزات.
  6. الأكسجين في المركبات له OS = −2.

تغطي هذه المجموعة من المسلمات حالات أكسدة الفلوريدات والكلوريدات والبروميدات والأكاسيد والهيدروكسيدات والهيدرات لأي عنصر منفرد. ويغطي جميع أحماض الأكسويدات لأي ذرة مركزية (وجميع أقاربها الفلورية والكلور والبرومو)، وكذلك أملاح هذه الأحماض مع معادن المجموعة 1 و 2. ويغطي أيضًا اليود والكبريتيدات والأملاح البسيطة المماثلة لهذه المعادن.

خوارزمية تخصيص السندات

يتم تنفيذ هذه الخوارزمية على هيكل لويس (رسم بياني يوضح جميع إلكترونات التكافؤ). تساوي حالة الأكسدة تهمة ذرة بعد كل من في غير متجانس النوى تم تعيين السندات إلى أكثر- كهربية شريك السند (باستثناء عندما يكون هذا الشريك هو المستعبدين عكسية يجند لويس الحمضية) ومتجانس النوى تم تقسيم السندات على حد سواء:

حيث يمثل كل "-" زوج إلكترون (إما مشترك بين ذرتين أو على ذرة واحدة فقط)، و "OS" هو حالة الأكسدة كمتغير رقمي.

بعد تعيين الإلكترونات وفقًا للخطوط الحمراء العمودية في الصيغة، يُطرح العدد الإجمالي لإلكترونات التكافؤ التي «تنتمي» الآن إلى كل ذرة من العدد N من إلكترونات التكافؤ للذرة المحايدة (مثل 5 للنيتروجين في المجموعة 15) للحصول على حالة أكسدة تلك الذرة.

يوضح هذا المثال أهمية وصف الترابط. صيغته الموجزة، HNO 3، تتوافق مع اثنين من أيزومرين هيكليين؛ حمض البيروكسينيتروز في الشكل أعلاه وحمض النيتريك الأكثر استقرارًا. باستخدام الصيغة HNO 3، فإن الطريقة البسيطة بدون اعتبارات الترابط تنتج 2 لجميع الأكسجين الثلاثة و +5 للنيتروجين، وهو ما يعتبر صحيحًا بالنسبة لحمض النيتريك. ومع ذلك، بالنسبة لحمض البيروكسينيتروز، فإن جزيئي الأكسجين في رابطة O-O يحتوي كل منهما على OS = −1 والنيتروجين لديه OS = +3، الأمر الذي يتطلب بنية لفهمها.

يتم التعامل مع المركبات العضوية بطريقة مماثلة؛ يتضح هنا على المجموعات الوظيفية التي تحدث بين CH 4 وCO 2 :

بشكل مشابه لمركبات المعادن الانتقالية؛ يحتوي CrO (O 2) 2 على اليسار على إجمالي 36 إلكترون تكافؤ (18 زوجًا يتم توزيعها)، وCr (CO) 6 على اليمين يحتوي على 66 إلكترونًا تكافؤًا (33 زوجًا):

تتمثل إحدى الخطوات الرئيسية في رسم بنية لويس للجزيء (محايد، كاتيوني، أنيوني): يتم ترتيب رموز الذرة بحيث يمكن ربط أزواج الذرات بواسطة روابط ثنائية إلكترونية كما في الجزيء (نوع من البنية «الهيكلية»)، ويتم توزيع إلكترونات التكافؤ المتبقية بحيث تحصل ذرات sp على ثماني بتات (ثنائي للهيدروجين) مع أولوية تزيد بالتناسب مع الكهربية. في بعض الحالات، يؤدي هذا إلى صيغ بديلة تختلف في أوامر السندات (تسمى المجموعة الكاملة منها صيغ الرنين). خذ بعين الاعتبار أنيون الكبريتات (SO42− مع 32 إلكترون تكافؤ؛ 24 من الأكسجين، 6 من الكبريت، 2 من شحنة الأنيون التي تم الحصول عليها من الكاتيون الضمني). أوامر الارتباط بالأكسجين الطرفي لا تؤثر على حالة الأكسدة طالما أن الأكسجين يحتوي على ثماني بتات. يعطي الهيكل العظمي، أعلى اليسار، حالات الأكسدة الصحيحة، كما يفعل هيكل لويس، أعلى اليمين (إحدى صيغ الرنين):

صيغة ترتيب السندات في الأسفل هي الأقرب إلى واقع أربعة أكسجين مكافئ لكل منها ترتيب رابطة إجمالي قدره 2. يشمل هذا المجموع سند النظام1/2 لالموجبة ضمني ويتبع 8 - تتطلب القاعدة N [9] أن يكون ترتيب رابطة ذرة المجموعة الرئيسية يساوي 8 ناقص إلكترونات التكافؤ N للذرة المحايدة، ويتم فرضها بأولوية تزيد بشكل متناسب مع الكهربية.

تعمل هذه الخوارزمية بالتساوي مع الكاتيونات الجزيئية المكونة من عدة ذرات. مثال على ذلك هو كاتيون الأمونيوم لثمانية إلكترونات تكافؤ (5 من النيتروجين، 4 من الهيدروجين، ناقص 1 إلكترون للشحنة الموجبة للكاتيون):

يؤكد رسم هياكل لويس مع أزواج الإلكترون كشرطات على التكافؤ الأساسي لأزواج الروابط والأزواج المنفردة عند عد الإلكترونات وتحريك الروابط على الذرات. الهياكل المرسومة بأزواج النقاط الإلكترونية هي بالطبع متطابقة بكل الطرق:

تحذير الخوارزمية

تحتوي الخوارزمية على تحذير، يتعلق بحالات نادرة من المجمعات المعدنية الانتقالية مع نوع من الترابط المرتبط بشكل عكسي كحمض لويس (كمقبول لزوج الإلكترون من المعدن الانتقالي)؛ يُطلق عليه رابط النوع زيد (بالإنجليزية: Z-type) في طريقة تصنيف الرابطة التساهمية الخاصة بـ جرين. ينشأ التحذير من الاستخدام المبسط للسلبية الكهربية بدلاً من الولاء الإلكتروني القائم على مدار جزيئي لتحديد العلامة الأيونية.[8] أحد الأمثلة المبكرة هو مركب O 2 S − RhCl (CO) (PPh 3) 2 [15] مع SO 2 باعتباره يجند متقبلًا عكسيًا (يتم إطلاقه عند التسخين). لذلك، فإن رابطة Rh-S هي أيونية مستقراء ضد كهرومغناطيسية ألن للروديوم والكبريت، مما يؤدي إلى حالة أكسدة +1 للروديوم:

خوارزمية تجميع أوامر السندات

تعمل هذه الخوارزمية على هياكل لويس والرسوم البيانية للسندات للمواد الصلبة الممتدة (غير الجزيئية):

«يتم الحصول على حالة الأكسدة عن طريق جمع أوامر الرابطة النووية غير المتجانسة في الذرة على أنها موجبة إذا كانت تلك الذرة هي الشريك الموجب للكهرباء في رابطة معينة وسالبة إن لم تكن كذلك، وتضاف الشحنة الرسمية للذرة (إن وجدت) إلى هذا المجموع.»

تم تطبيقه على هيكل لويس

مثال على هيكل لويس بدون رسوم رسمية:

يوضح أنه في هذه الخوارزمية، يتم ببساطة تجاهل الروابط متجانسة النواة (أوامر السندات باللون الأزرق).

يمثل أول أكسيد الكربون هيكل لويس مع رسوم رسمية:

للحصول على حالات الأكسدة، يتم جمع الرسوم الرسمية مع قيمة طلب السندات التي تؤخذ بشكل إيجابي عند الكربون وسلبًا عند الأكسجين.

عند تطبيقها على الأيونات الجزيئية، تراعي هذه الخوارزمية الموقع الفعلي للشحنة الرسمية (الأيونية)، كما هو مرسوم في هيكل لويس. على سبيل المثال، ينتج عن جمع أوامر السندات في كاتيون الأمونيوم −4 عند نيتروجين الشحنة الرسمية +1، مع إضافة الرقمين إلى حالة الأكسدة البالغة −3:

مجموع حالات الأكسدة في الأيون يساوي شحنتها (لأنها تساوي صفرًا للجزيء المحايد).

أيضًا في الأنيونات، يجب مراعاة الرسوم الرسمية (الأيونية) عندما لا تكون صفرية. بالنسبة للكبريتات، يتم تمثيل ذلك من خلال الهياكل الهيكلية أو هياكل لويس (أعلى)، مقارنة مع صيغة ترتيب الرابطة لجميع مكافئ الأكسجين وتحقيق الثماني و 8 - قواعد N (أسفل):

يتم تطبيقه على الرسم البياني للسندات

الرسم البياني للسندات  [لغات أخرى]‏ في كيمياء الحالة الصلبة هو صيغة كيميائية لهيكل ممتد، تظهر فيه روابط الترابط المباشر. مثال على ذلك AuORb 3 بيروفسكيت، وخلية الوحدة التي يتم رسمها على اليسار والرسم البياني للسندات (مع القيم العددية المضافة) على اليمين:

نرى أن ذرة الأكسجين ترتبط بأقرب ستة كاتيونات روبيديوم، ولكل منها 4 روابط بأنيون الأوريد. يلخص الرسم البياني للسندات هذه الروابط. أوامر السندات (وتسمى أيضًا التكافؤات) تلخص حالات الأكسدة وفقًا للإشارة المرفقة للتقريب الأيوني للسند (لا توجد رسوم رسمية في الرسوم البيانية للسندات).

يمكن توضيح تحديد حالات الأكسدة من الرسم البياني للسندات على الإلمنيت، FeTiO 3. قد نسأل ما إذا كان المعدن يحتوي على Fe 2+ و Ti 4+، أو Fe 3+ و Ti 3+. يحتوي هيكلها البلوري على كل ذرة معدنية مرتبطة بستة أكسجين وكل من الأكسجين المكافئ لاثنين من الحديد واثنين من التيتانيوم، كما في الرسم البياني للرابطة أدناه. تظهر البيانات التجريبية أن ثلاثة روابط أكسجين معدني في المجسم الثماني قصيرة وثلاثة طويلة (المعادن خارج المركز). أوامر السندات (التكافؤات)، التي تم الحصول عليها من أطوال السندات بطريقة تكافؤ السندات، تصل إلى 2.01 عند الحديد و 3.99 عند Ti؛ والتي يمكن تقريبها إلى حالات الأكسدة +2 و +4 على التوالي:

موازنة الأكسدة والاختزال

يمكن أن تكون حالات الأكسدة مفيدة في موازنة المعادلات الكيميائية لتفاعلات اختزال الأكسدة (أو الأكسدة)، لأنه يجب موازنة التغيرات في الذرات المؤكسدة بالتغييرات في الذرات المختزلة. على سبيل المثال، في رد فعل الأسيتالديهيد مع كاشف تولينز " لتشكيل حمض الخليك (كما هو موضح أدناه)، والكربونيل ذرة كربون تتغير حالة الأكسدة لها 1-3 (يفقد اثنين من الالكترونات). تتم موازنة هذه الأكسدة عن طريق تقليل اثنين من الكاتيونات Ag + إلى Ag 0 (الحصول على إلكترونين في المجموع).

مثال غير عضوي هو تفاعل بيتيندورف باستخدام SnCl 2 لإثبات وجود أيونات الزرنيخ في مستخلص حمض الهيدروكلوريك المركز. عند وجود الزرنيخ (III)، يظهر لون بني مكونًا ترسبًا داكنًا من الزرنيخ، وفقًا للتفاعل المبسط التالي:

2 As3+ + 3 Sn2+ → 2 As0 + 3 Sn4+

هنا تتأكسد ثلاث ذرات من القصدير من حالة الأكسدة +2 إلى +4، مما ينتج عنه ستة إلكترونات تقلل ذرتين من الزرنيخ من حالة الأكسدة +3 إلى 0. تسير الموازنة البسيطة المكونة من سطر واحد على النحو التالي: تتم كتابة أزواج الأكسدة والاختزال عند رد فعلهم؛

As3+ + Sn2+ As0 + Sn4+.

يتأكسد قصدير واحد من حالة الأكسدة +2 إلى +4، خطوة من إلكترونين، ومن ثم تتم كتابة 2 أمام شريكي الزرنيخ. يتم تقليل زرنيخ واحد من +3 إلى 0، خطوة من ثلاثة إلكترونات، وبالتالي 3 يذهب أمام الشريكين القصدير. إجراء بديل من ثلاثة أسطر هو كتابة التفاعلات النصفية للأكسدة والاختزال بشكل منفصل، كل منها متوازن بالإلكترونات، ثم تلخيصها بحيث تشطب الإلكترونات. بشكل عام، يجب فحص أرصدة الأكسدة والاختزال (توازن الخط الواحد أو كل نصف تفاعل) للتأكد من تساوي مجموع الشحنة الأيونية والإلكترون على جانبي المعادلة بالفعل. إذا لم تكن متساوية، تتم إضافة أيونات مناسبة لموازنة الشحنات والتوازن العنصري غير الأكسدة.

ظهور

حالات الأكسدة الاسمية

حالة الأكسدة الاسمية هي مصطلح عام لقيمتين محددتين موجهتين لغرض:

حالة الأكسدة الكهروكيميائية؛ يمثل جزيءًا أو أيونًا في مخطط لاتيمر أو مخطط فروست لعنصره النشط الأكسدة والاختزال. مثال على ذلك هو مخطط لاتيمر للكبريت عند درجة الحموضة 0 حيث تضع حالة الأكسدة الكهروكيميائية +2 للكبريت HS2O3 بين S وH 2 SO 3 :

  • حالة الأكسدة المنهجية يتم اختياره من بدائل قريبة لأسباب تربوية للكيمياء الوصفية. مثال على ذلك هو حالة أكسدة الفوسفور في H 3 PO 3 (والتي هي في الواقع HPO ثنائي البروتونات (OH) 2) مأخوذة اسميًا على أنها +3، بينما يقترح ألين كهرسلبية للفوسفور والهيدروجين +5 بهامش ضيق مما يجعل الاثنين بدائل متكافئة تقريبًا:

كلتا حالات الأكسدة البديلة للفوسفور لها معنى كيميائي، اعتمادًا على الخاصية الكيميائية أو التفاعل الذي نرغب في التأكيد عليه. في المقابل، فإن أي تعديلات رياضية، مثل المتوسط (+4) لا تفعل ذلك.

حالات أكسدة غامضة

صيغ لويس هي تقديرات تقريبية للواقع الكيميائي قائمة على قواعد جيدة، كما هو الحال بالفعل مع ألين الكهربية. ومع ذلك، قد تبدو حالات الأكسدة غامضة عندما لا يكون تحديدها واضحًا. حالات الأكسدة المستندة إلى القواعد تشعر بالغموض عندما يمكن للتجارب فقط أن تقرر. هناك أيضًا قيم ثنائية التفرع حقًا يتم تحديدها بمجرد الراحة.

إن تحديد حالة الأكسدة من صيغ الرنين ليس واضحًا

يتم الحصول على حالات الأكسدة الغامضة على ما يبدو على مجموعة من صيغ الرنين ذات الأوزان المتساوية لجزيء الروابط غير المتجانسة النوى حيث لا يتوافق اتصال الذرة مع عدد الروابط ثنائية الإلكترون التي تمليها 8 - القاعدة N. مثال على ذلك هو S 2 N 2 حيث أربع صيغ رنين تحتوي على رابطة مزدوجة S = N لها حالات أكسدة +2 و +4 على ذرتين من الكبريت، على أن يتم حساب متوسطها إلى +3 لأن ذرتي الكبريت متساويتان في هذا الشكل المربع مركب.

هناك حاجة إلى قياس فيزيائي لتقرير حالة الأكسدة

  • يحدث هذا عند وجود رابط غير بريء، لخصائص الأكسدة والاختزال المخفية أو غير المتوقعة التي يمكن تخصيصها للذرة المركزية. مثال على ذلك هو مركب نيكل ثنائي الثيولات، Ni(S2C2H2)22−.[9] :1056–1057
  • عندما ينتج عن غموض الأكسدة والاختزال لذرة مركزية ولجند حالات أكسدة ثنائية التفرع من الثبات الوثيق، فقد ينتج عن التوتومر المستحث حراريًا، كما يتضح من كاتيكولات المنغنيز،

Mn (C 6 H 4 O 2) 3.[9] :1057–1058 يتطلب تعيين حالات الأكسدة هذه بشكل عام بيانات طيفية، [16] مغناطيسية أو هيكلية.

  • عندما يجب التأكد من ترتيب السندات جنبًا إلى جنب مع ترادف معزول لرابطة غير متجانسة النواة ورابطة متجانسة النواة. مثال على ذلك هو ثيوسلفات S2O32− مع بدائلين لحالة الأكسدة (أوامر السندات باللون الأزرق والرسوم الرسمية باللون الأخضر):
هناك حاجة إلى مسافة S-S في الثيوسلفات للكشف عن أن ترتيب السندات هذا قريب جدًا من 1، كما هو الحال في الصيغة الموجودة على اليسار.

تحدث حالات أكسدة غامضة حقًا

  • عندما يكون فرق الكهربية بين ذرتين مترابطتين صغيرًا جدًا (كما في H 3 PO 3 أعلاه). يتم الحصول على زوجين متكافئين تقريبًا من حالات الأكسدة، مفتوحين للاختيار، لهذه الذرات.
  • عندما تشكل ذرة كتلة p الكهربية روابط متجانسة النواة فقط، يختلف عددها عن عدد الروابط ثنائية الإلكترون التي تقترحها القواعد. الأمثلة هي سلاسل محدودة متجانسة النواة مثل N3 (يربط النيتروجين المركزي ذرتين بأربع روابط ثنائية الإلكترون بينما ثلاثة روابط ثنائية الإلكترون فقط [17] مطلوبة بمقدار 8 - N حكم) أو I3 (يربط اليود المركزي ذرتين بروابط ثنائية إلكترون بينما تفي رابطة إلكترون واحدة فقط بـ 8 - القاعدة N). تتمثل الطريقة المعقولة في توزيع الشحنة الأيونية على الذرتين الخارجيتين.[9] مثل هذا التنسيب للشحنات في متعدد الكبريتيد Sn2− (حيث تشكل جميع الكبريتات الداخلية رابطتين، تحقق 8 - القاعدة N) تتبع بالفعل من هيكل لويس الخاص بها.[9]
  • عندما يؤدي الترادف المعزول لرابطة غير متجانسة النواة ومتجانسة النواة إلى تسوية ترابط بين بنيتي لويس لأوامر السندات المحدودة. مثال هنا هو N 2 O :
حالة أكسدة النيتروجين المستخدمة عادةً في N 2 O هي +1، والتي تحصل أيضًا على كل من النيتروجين من خلال النهج المداري الجزيئي.[18] الرسوم الرسمية على اليمين تتوافق مع الكهربية، وهذا يعني مساهمة الرابطة الأيونية المضافة. في الواقع، أوامر السندات المقدرة N − N و N O هي 2.76 و 1.9، على التوالي، [9] تقترب من صيغة أوامر السندات الصحيحة التي تتضمن المساهمة الأيونية بشكل صريح كسند (باللون الأخضر):

على العكس من ذلك، فإن الرسوم الرسمية ضد الكهربية في هيكل لويس تقلل من ترتيب السندات للسند المقابل. مثال على ذلك هو أول أكسيد الكربون مع تقدير ترتيب السندات 2.6.[19]

حالات الأكسدة الجزئية

غالبًا ما تُستخدم حالات الأكسدة الجزئية لتمثيل حالة الأكسدة المتوسطة للعديد من ذرات نفس العنصر في البنية. على سبيل المثال، صيغة المغنتيت هي Fe3O4، مما يعني أن متوسط حالة الأكسدة للحديد +8/3 [20] :81–82 ومع ذلك، قد لا تكون هذه القيمة المتوسطة ممثلة إذا لم تكن الذرات متكافئة. في Fe3O4 بلورات أقل من 120 ك (−153 °م)، ثلثا الكاتيونات هي Fe3+ والثلث عبارة عن Fe2+، ويمكن تمثيل الصيغة بشكل أكثر تحديدًا على أنها FeO·Fe2O3.[21]

وبالمثل، البروبان، C3H8، تم وصفه بأنه يحتوي على حالة أكسدة الكربون -8/3 [22] مرة أخرى، هذه قيمة متوسطة نظرًا لأن بنية الجزيء هي H3C−CH2−CH3، مع كل من ذرات الكربون الأولى والثالثة حالة أكسدة −3 والذرة المركزية −2.

مثال على حالات الأكسدة الجزئية الحقيقية للذرات المكافئة هو أكسيد البوتاسيوم الفائق، KO2. أيون فوق أكسيد ثنائي الذرة O2 لديه شحنة إجمالية قدرها 1، لذلك يتم تعيين حالة أكسدة لكل من ذرات الأكسجين المكافئة -1/2 يمكن وصف هذا الأيون بأنه هجين رنيني لبنيتي لويس، حيث يكون لكل أكسجين حالة أكسدة قدرها 0 في بنية واحدة و -1 في الهيكل الآخر.

لأنيون سيكلوبنتاديينيل C5H5، حالة أكسدة C هي −1 + -1/5 = -6/5 يحدث −1 لأن كل كربون مرتبط بذرة هيدروجين واحدة (عنصر أقل كهرسلبية)، و-1/5 ليتم تقسيم تهمة الأيونية الكلي لل-1 بين خمسة الكربون تعادل. مرة أخرى، يمكن وصف هذا بأنه هجين رنيني من خمسة هياكل متكافئة، لكل منها أربعة ذرات كربون بحالة أكسدة −1 وواحد مع −2.

أمثلة على حالات الأكسدة الجزئية للكربون

حالة الأكسدةأمثلة
6/5C5H5
6/7C7H7+
+3/2C4O42−

أخيرًا، يجب عدم استخدام أرقام الأكسدة الكسرية في التسمية.[23] :66 الرصاص الأحمر ورمزه هو Pb3O4، فيتم تمثيل Pb3O4 كأكسيد الرصاص (II، IV)، مما يدل على حالتي الأكسدة الفعليتين لذرات الرصاص غير المتكافئة.

عناصر ذات حالات أكسدة متعددة

تحتوي معظم العناصر على أكثر من حالة أكسدة محتملة. على سبيل المثال، يحتوي الكربون على تسع حالات أكسدة صحيحة محتملة من −4 إلى +4:

حالات الأكسدة الصحيحة للكربون

حالة الأكسدةمثال مركب
−4CH4
−3C2H6
−2C2H4، CH3Cl
−1C2H2، C6H6، (CH2OH)2
0HCHO، CH2Cl2
+1OCHCHO، CHCl2CHCl2
+2HCOOH، CHCl3
+3HOOCCOOH، C2Cl6
+4CCl4، CO2

حالة الأكسدة في المعادن

تحافظ العديد من المركبات ذات الموصلية اللامعة والكهربائية على صيغة متكافئة بسيطة؛ مثل الذهبي تيو والأزرق والأسود RuO 2 أو نحاسي تكتنفها 3، كل حالة الأكسدة واضحة. في النهاية، ومع ذلك، فإن تخصيص الإلكترونات المعدنية الحرة لإحدى الذرات المترابطة له حدوده ويؤدي إلى حالات أكسدة غير عادية. أمثلة بسيطة هي أمر LiPb والنحاس 3 الاتحاد الأفريقي سبائك، وتكوين وبنية التي تتحدد إلى حد كبير من حجم الذري وعوامل التعبئة. إذا كانت هناك حاجة إلى حالة الأكسدة لموازنة الأكسدة والاختزال، فمن الأفضل ضبطها على 0 لجميع ذرات مثل هذه السبيكة.

قائمة حالات أكسدة العناصر

هذه قائمة بحالات الأكسدة المعروفة للعناصر الكيميائية، باستثناء القيم غير المتكاملة. تظهر الحالات الأكثر شيوعًا بالخط العريض. يعتمد الجدول على جدول غرينوود وإيرنشو، [24] مع الإضافات المذكورة. يوجد كل عنصر في حالة الأكسدة 0 عندما يكون العنصر النقي غير المتأين في أي مرحلة، سواء كان تآصل أحادي الذرة أو متعدد الذرات. يظهر عمود حالة الأكسدة 0 فقط العناصر المعروفة بوجودها في حالة الأكسدة 0 في المركبات.

عنصرالحالات السلبية / الأختزالالحالات الإيجابية / الأكسدةمجموعةمراجع
−5−4−3−2−10+1+2+3+4+5+6+7+8+9
Z
1هيدروجينH−1+11
2هيليومHe18
3ليثيومLi+11[25]
4بريليومBe0+1+22[26][27]
5بورونB−5−10+1+2+313[28][29][30]
6كربونC−4−3−2−10+1+2+3+414
7نيتروجينN−3−2−1+1+2+3+4+515
8أكسجينO−2−10+1+216
9الفلورF−117
10نيونNe18
11صديومNa−1+11[25]
12ماغنسيومMg+1+22[31]
13ألومنيومAl−2−1+1+2+313[32][33][34]
14سيليكونSi−4−3−2−10+1+2+3+414[35]
15الفوسفورP−3−2−10+1+2+3+4+515[36]
16كبريتS−2−10+1+2+3+4+5+616
17الكلورCl−1+1+2+3+4+5+6+717[37]
18الأرجونAr018[38]
19البوتاسيومK−1+11[25]
20كالسيومCa+1+22[39]
21سكانديومSc0+1+2+33[40][41][42]
22التيتانيومTi−2−10+1+2+3+44[43][44][45][46]
23الفاناديومV−3−10+1+2+3+4+55[44]
24الكرومCr−4−2−10+1+2+3+4+5+66[44]
25المنغنيزMn−3−2−10+1+2+3+4+5+6+77
26حديدFe−4−2−10+1+2+3+4+5+6+78[47][48][49]
27كوبالتCo−3−10+1+2+3+4+59[44]
28نيكلNi−2−10+1+2+3+410[50]
29النحاسCu−20+1+2+3+411[51]
30زنكZn−20+1+212[52][53]
31الغاليومGa−5−4−3−2−1+1+2+313[54][55]
32الجرمانيومGe−4−3−2−10+1+2+3+414[56]
33الزرنيخAs−3−2−10+1+2+3+4+515[57][58][59]
34السيلينيومSe−2−1+1+2+3+4+5+616[60][61][62][63]
35البرومBr−1+1+3+4+5+717
36الكريبتونKr0+1+218
37الروبيديومRb−1+11[25]
38السترونشيومSr+1+22[64]
39الإيتريومY0+1+2+33[65][66][67]
40الزركونيومZr−20+1+2+3+44[44][68][69]
41النيوبيومNb−3−10+1+2+3+4+55[44][70][71]
42الموليبدينومMo−4−2−10+1+2+3+4+5+66[44]
43التكنيتيومTc−3−10+1+2+3+4+5+6+77
44الروثينيومRu−4−20+1+2+3+4+5+6+7+88[44]
45الروديومRh−3−10+1+2+3+4+5+69[44][72]
46البلاديومPd0+1+2+3+410[73][74]
47فضةAg−2−1+1+2+311[75]
48الكادميومCd−2+1+212[76]
49الإنديومIn−5−2−1+1+2+313[77][78]
50قصديرSn−4−3−2−10+1+2+3+414[79][80]
51الأنتيمونSb−3−2−10+1+2+3+4+515[81][82][83][84]
52التيلوريومTe−2−1+1+2+3+4+5+616[85][86][87]
53اليودI−1+1+3+4+5+6+717[88][89]
54زينونXe0+1+2+4+6+818[90][91][92]
55سيزيومCs−1+11[25]
56الباريومBa+1+22[93]
57اللانثانمLa0+1+2+3n/a[94]
58السيريومCe+2+3+4n/a
59البراسيوديميومPr0+1+2+3+4+5n/a[95][96][97]
60النيوديميومNd0+2+3+4n/a[98]
61بروميثيومPm+2+3n/a[99]
62السماريومSm0+2+3n/a
63اليوروبيومEu0+2+3n/a
64الجادولينيومGd0+1+2+3n/a
65تيربيومTb0+1+2+3+4n/a
66الديسبروسيومDy0+2+3+4n/a[100]
67هولميومHo0+2+3n/a
68الإربيومEr0+2+3n/a
69الثوليومTm0+2+3n/a
70الإيتربيومYb0+2+3n/a
71اللوتيتيومLu0+2+33
72الهافنيومHf−20+1+2+3+44[44][101]
73التنتالومTa−3−10+1+2+3+4+55[44]
74التنغستنW−4−2−10+1+2+3+4+5+66[44]
75الرينيومRe−3−10+1+2+3+4+5+6+77
76الأوزميومOs−4−2−10+1+2+3+4+5+6+7+88[102]
77إيريديومIr−3−10+1+2+3+4+5+6+7+8+99[103][104][105][106]
78البلاتينPt−3−2−10+1+2+3+4+5+610[107][108]
79ذهبAu−3−2−10+1+2+3+511[109]
80الزئبقHg−2+1+212[110]
81الثاليومTl−5−2−1+1+2+313[111][112][113]
82الرصاصPb−4−2−1+1+2+3+414[114][115]
83البزموتBi−3−2−1+1+2+3+4+515[116][117][118][119]
84البولونيومPo−2+2+4+5+616[120]
85أستاتينAt−1+1+3+5+717
86رادونRn+2+618[121][122][123]
87فرانسيومFr+11
88الراديومRa+22
89الأكتينيومAc+3n/a
90الثوريومTh+1+2+3+4n/a[124][125]
91البروتكتينيومPa+3+4+5n/a
92اليورانيومU+1+2+3+4+5+6n/a[126][127]
93النبتونيومNp+2+3+4+5+6+7n/a[128]
94البلوتونيومPu+2+3+4+5+6+7+8n/a[129][130]
95الأمريسيومAm+2+3+4+5+6+7n/a[131]
96كوبرنسيومCm+3+4+5+6n/a[132][133][134][135]
97بيركيليومBk+2+3+4+5n/a[136][137][138]
98كاليفورنيومCf+2+3+4+5n/a
99أينشتينيومEs+2+3+4n/a[139]
100الفيرميومFm+2+3n/a
101مندليفيومMd+2+3n/a
102نوبليومNo+2+3n/a
103لورنسيمLr+33
104رذرفورديومRf+44
105دوبنيومDb+55[140]
106سيبورجيومSg0+66[141][142]
107البوهريومBh+77[143]
108الهاسيومHs+88[144]
109مايتنريومMt9
110دارمشتاتيومDs10
111رونتجينيومRg11
112كوبرنسيومCn+212[145]
113نيهونيومNh13
114فليروفيومFl14
115موسكوفيومMc15
116ليفرموريومLv16
117تينسينTs17
118أوغانيسونOg18

الأشكال المبكرة (قاعدة الثمانيات)

تم استخدام شخصية ذات تنسيق مشابه من قبل إيرفينغ لانجموير في عام 1919 في إحدى الأوراق الأولى حول قاعدة الثمانيات.[146] كان تواتر حالات الأكسدة أحد الأدلة التي قادت لانجموير إلى تبني القاعدة.

استخدم في التسمية

يتم وضع حالة الأكسدة في تسمية المركب للمعادن الانتقالية واللانثانيدات والأكتينيدات إما كخط مرتفع يمين لرمز العنصر في صيغة كيميائية، مثل Fe III أو بين قوسين بعد اسم العنصر في الأسماء الكيميائية، مثل الحديد (الثالث). على سبيل المثال، Fe2(SO4)3 يسمى كبريتات الحديد (III) ويمكن أن تظهر صيغته على أنها Fe
2
. هذا لأن شحنة أيون الكبريتات تساوي −2، لذا فإن كل ذرة حديد تأخذ شحنة +3.

تاريخ مفهوم حالة الأكسدة

الأيام الأولى

تم دراسة الأكسدة نفسها لأول مرة من قبل أنطوان لافوازييه، الذي عرّفها على أنها نتيجة تفاعلات مع الأكسجين (ومن هنا جاءت تسميتها).[147][148] تم تعميم المصطلح منذ ذلك الحين على أنه يعني خسارة رسمية للإلكترونات. حالات الأكسدة، التي أطلق عليها فريدريك فولر درجات الأكسدة في عام 1835، [149] كانت واحدة من نقاط الانطلاق الفكرية التي استخدمها ديمتري مندليف لاشتقاق الجدول الدوري. يقدم جنسن [150] لمحة عامة عن التاريخ حتى عام 1938.

استخدم في التسمية

عندما تم إدراك أن بعض المعادن تشكل مركبين ثنائيين مختلفين مع نفس اللافلزية، غالبًا ما تم تمييز المركبين باستخدام النهاية -ic لحالة أكسدة المعدن الأعلى والنهاية -ous للجزء السفلي. على سبيل المثال، FeCl 3 عبارة عن كلوريد حديديك و FeCl 2 عبارة عن كلوريد حديدوز. هذا النظام ليس مُرضيًا للغاية (على الرغم من أنه لا يزال مستخدمًا في بعض الأحيان) لأن المعادن المختلفة لها حالات أكسدة مختلفة يجب تعلمها: الحديد والصلب هما +3 و +2 على التوالي، لكن النحاسي والنحاسي هما +2 و +1، والستانيك وستانوس هي +4 و +2. أيضًا، لم يكن هناك بدل للمعادن التي تحتوي على أكثر من حالتي أكسدة، مثل الفاناديوم مع حالات الأكسدة +2، +3، +4، +5.[20] :84

تم استبدال هذا النظام إلى حد كبير بنظام اقترحه ألفريد ستوك في عام 1919 [151] واعتمده [152] قبل الاتحاد الدولي للكيمياء البحتة والتطبيقية (IUPAC) في عام 1940. وهكذا، تمت كتابة FeCl 2 على هيئة كلوريد الحديد (II) بدلاً من كلوريد الحديدوز. أطلق على الرقم الروماني II الموجود في الذرة المركزية اسم «رقم المخزون» (أصبح مصطلحًا قديمًا)، وتم الحصول على قيمته كشحنة في الذرة المركزية بعد إزالة روابطها مع أزواج الإلكترون التي تشاركوها معها.[23] :147

التطور نحو المفهوم الحالي

شاع مصطلح "حالة الأكسدة" في الأدب الكيميائي الإنجليزي من قبل وينديل ميتشيل لاتيمر في كتابه عام 1938 حول الإمكانات الكهروكيميائية.[153] استخدمها للقيمة (مرادفة للمصطلح الألماني:Wertigkeit) التي كان يطلق عليها سابقًا "التكافؤ" أو "التكافؤ القطبي" أو "الرقم القطبي" [154] باللغة الإنجليزية أو "مرحلة الأكسدة" أو في الواقع [155][156] حالة الأكسدة ". منذ عام 1938، ارتبط مصطلح "حالة الأكسدة" بالإمكانيات الكهروكيميائية والإلكترونات المتبادلة في أزواج الأكسدة والاختزال المشاركة في تفاعلات الأكسدة والاختزال. بحلول عام 1948، استخدم الاتحاد الدولي للكيمياء البحتة والتطبيقيةقواعد التسمية لعام 1940 مع مصطلح "حالة الأكسدة"، [157][158] بدلاً من التكافؤ [152] الأصلي. في عام 1948 اقترح لينوس بولينج أنه يمكن تحديد عدد الأكسدة عن طريق استقراء الروابط لتكون أيونية بالكامل في اتجاه الكهربية.[159] كان القبول الكامل لهذا الاقتراح معقدًا بسبب حقيقة أن سلوكيات Pauling الكهربية على هذا النحو تعتمد على حالة الأكسدة وأنها قد تؤدي إلى قيم غير عادية لحالات الأكسدة لبعض المعادن الانتقالية. في عام 1990، لجأ الاتحاد الدولي للكيمياء البحتة والتطبيقية إلى طريقة تبعية (قائمة على القواعد) لتحديد حالة الأكسدة.[160] تم استكمال ذلك من خلال رقم الأكسدة المرادف باعتباره سليل رقم المخزون الذي تم إدخاله في عام 1940 في التسمية. ومع ذلك، فإن المصطلحات التي تستخدم " الروابط " [23] :147 أعطت انطباعًا بأن عدد الأكسدة قد يكون شيئًا خاصًا بمجمعات التنسيق. أدى هذا الموقف وعدم وجود تعريف واحد حقيقي إلى العديد من المناقشات حول معنى حالة الأكسدة، واقتراحات حول طرق الحصول عليها وتعريفاتها. لحل هذه المشكلة، بدأ مشروع الاتحاد الدولي للكيمياء البحتة والتطبيقية(2008-040-1-200) في عام 2008 بشأن "التعريف الشامل لحالة الأكسدة"، واختتم بتقريرين [8][9] ومن خلال المدخلات المنقحة "الأكسدة اذكر " و" رقم الأكسدة " [10] في الكتاب الذهبي للاتحاد الدولي للكيمياء البحتة والتطبيقية. كانت النتائج عبارة عن تعريف واحد لحالة الأكسدة وخوارزميتين لحسابها في المركبات الجزيئية والصلبة الممتدة، مسترشدة بسلبية ألين الكهربية المستقلة عن حالة الأكسدة.

حالات التأكسد الصحيحة المحتملة للكربون

حالة الأكسدةمثال
-4CH4
-3C2H6
-2C2H4 , CH3Cl
-1C2H2, C6H6
0HCHO
+1OCHCHO
+2HCOOH
+3HOOCCOOH
+4CO2

تعريف الأكسدة

قام الاتحاد الدولي للكيمياء البحتة والتطبيقية بتعريف حالة الأكسدة كالآتي:[161]

حالة الأكسدة: هي مقياس لدرجة تأكسد ذرة في مادة.وتعرف بأنها الشحنة التي يمكن تصور أن تحصل عليها الذرة عندما تعد الإلكترونات على أساس عدة مبادئ:

1) حالة الأكسدة لعنصر حر (غير مرتبط) تساوي صفرًا،

2) بالنسبة إلى أيون أحادي الذرة تكون حالة الأكسدة مساوية لشحنة الأيون،

3) حالة الأكسدة للهيدروجين تساوي +1، و حالة الأكسدة للأكسجين -2 عند تواجدهما في معظم المركبات. (في حالات خاصة تكون حالة أكسدة الهيدروجين -1 في هيدريد الفلزات النشطة، مثل هيدرات الليثيوم LiH, وتكون حالة أكسدة الأكسجين في البيروكسيد -1 أي H2O2);

(4) يجب أن يكون مجموع حالات أكسدة جميع الذرات في جزيء متعادلًا كهربيًا مساويًا للصفر، بينما تكون مجموع حالات الأكسدة للذرات المكونة للأيون مساوية لشحنة الأيون. وعلى سبيل المثال، تكون حالات أكسدة الكبريت في H2Sو S8(الكبريت الأولي ) و SO2 و SO3 و H2SO4 مساوية: -2 و 0 و +4و +6 و +6 على التوالي. وتكون حالات الأكسدة الأعلى لذرة كلما زادت درجة أكسدتها، وكلما انخفضت حالة أكسدتها تزداد درجة اختزالها.

الفرق بين حالة أكسدة وعدد الأكسدة

عدد الأكسدة للكربون و الهيدروجين في الإيثان.

تتساوى في أغلب الأحوال قيمة حالة الأكسدة (بالإنجليزية: oxidation state) وقيمة ما يسمى عدد الأكسدة (بالإنجليزية: oxidation number) ولكنهما مختلفان. يستخدم عدد الأكسدة في المعقدات التساندية وفيها تختلف قواعد عد الإلكترونات عنها في حالة الأكسدة، نطبق مع المعقدات التساندية القاعدة : كل إلكترون ينتسب إلى أحد الربيطات بصرف النظر عن ماله من سالبية كهربية. نرمز لعدد الأكسدة بالرموز اللاتينية بينما نرمز لحالة الأكسدة بالأرقام العربية. كما أننا يمكن أن نستخدم عدد الأكسدة لذرة مركزية في تسمية مركب معقد تساندي، مثل أكسيد الحديد (الثاني والثالث)، ولا تدخل في تسمية المركب حالة الأكسدة.

يكتب عدد الأكسدة إما على يمين رمز العنصر بالحروف اللاتينية، مثل FeIII أو بين قوسين بعد اسم العنصر مثل أكسيد الحديد (الثالث): وفي تلك الحالة الأخيرة لا نترك مسافة بين اسم العنصر وعدد الأكسدة.

القواعد العامة لتحديد حالة الأكسدة بدون الاعتماد على بنية لويس

  1. أي عنصر نقي (وقد يكون جزيئا ثنائيا مثل الكلور Cl2) تكون له حالة الأكسدة (OS) مساوية للصفر، أمثلة على ذلك النحاس Cu أو الأكسجين O2.
  2. بالنسبة إلى أيون ذرة أحادية يكون (OS) مساويا لشحنة الأيون.فمثلا S2- يكون له OS مساويا -2, بينما Li+ يكون له +1.
  3. يكون مجموع حالات الأكسدة OSs لجميع الذرات في جزيئ أو أيون متعدد الذرات مساويا لشحنة الجزيئ أو الأيون، بحيث يمكن حساب حالة أكسدة أحد العناصر من بقية حالات أكسدة العناصر الباقية. فمثلا، في (SO32- (أيون الكبريتيت), تكون الشحنة الكلية للأيون -2، وكل ذرة أكسجين باعتبار أن لها حالة الأكسدة -2 كالعادة. عندئذ يكون مجموع حالات الأكسدة OSs مساويا OS(S) + 3(-2) = -2, وبالتالي نحصل على حالة أكسدة الكبريت OS(S) = +4.
  4. مع ملاحظة عدم الخلط بين الشحنة على ذرة بحالة أكسدتها، إذ ربما يختلفان، وبالفعل يختلفان غالبا في الأيونات عديدة الذرات. وعلى سبيل المثال، تكون الشحنة على ذرة النيتروجين في أيون الأمونيا NH4+ مساويا +1, في حين تكون حالة أكسدته -3, وهي تساوي حالة أكسدة النيتروجين في الأمونيا. في تلك الحالة تكون الشحنة على الذرة قد تغيرت مع عدم تغير حالة أكسدتها.

اتزان الأكسدة والأختزال

يمكن أن تكون حالات الأكسدة مفيدة في اتزان المعادلات الكيميائية لتفاعلات اختزال الأكسدة (بالإنجليزية: redox) لأنه يجب موازنة التغيرات في الذرات المؤكسدة بالتغييرات في الذرات المختزلة. على سبيل المثال في تفاعل الأسيتالديهيد مع كاشف تولنس لتكوين حمض الأسيتيك تتغير حالة أكسدة ذرة الكربونيل من +1 إلى +3 (تفقد إلكترونين)، تتم موازنة هذه الأكسدة عن طريق تقليل اثنين من كاتيونات +Ag إلي 0Ag.

مثال غير عضوي هو تفاعل بيتيندورف باستخدام SnCl2 لإثبات وجود أيونات الزرنيخ في مستخلص حمض الهيدروكلوريك المركز. عند وجود الزرنيخ (III)، يظهر لون بني مكونًا ترسبًا داكنًا من الزرنيخ، وفقًا للتفاعل المبسط التالي:

4+ 2As3+ + 3 Sn2+ → 2 As0 + 3Sn

هنا تتأكسد ثلاث ذرات من القصدير من حالة الأكسدة +2 إلى +4 مما ينتج عنه ستة إلكترونات تقلل ذرتين من الزرنيخ من حالة الأكسدة من +3 إلى 0.

تاريخ مفهوم حالة الأكسدة

تم دراسة الأكسدة لأول مرة من قبل أنطوان لافوازييه الذي عرّفها بأنها نتيجة تفاعلات مع الأكسجين (ومن هنا جاء الاسم).[162][163] تم تعميم المصطلح منذ ذلك الحين على أنه فقد الإلكترونات. حالات الأكسدة أو درجات الأكسدة التي أطلق فريدريك فولر في عام 1835[164] كانت واحدة من نقاط الانطلاق الفكرية التي استخدمها ديمتري مندليف لاشتقاق الجدول الدوري.[150]

اقرا أيضًا


المراجع

🔥 Top keywords: ريال مدريددوري أبطال أوروباالصفحة الرئيسيةمانشستر سيتيخاص:بحثنادي أرسنالنادي الهلال (السعودية)بايرن ميونخشيرين سيف النصرتصنيف:أفلام إثارة جنسيةسكسي سكسي لافرعرب العرامشهعبد الحميد بن باديسنادي برشلونةبرشلونة 6–1 باريس سان جيرمانمتلازمة XXXXدوري أبطال آسياالكلاسيكوكارلو أنشيلوتيأنطونيو روديغرإبراهيم ديازصلاة الفجرنادي العينيوتيوبملف:Arabic Wikipedia Logo Gaza (3).svgتصنيف:ممثلات إباحيات أمريكياتيوم العلم (الجزائر)قائمة أسماء الأسد في اللغة العربيةكريستيانو رونالدوميا خليفةسفيان رحيميحسن الصباحعثمان ديمبيليالدوري الإنجليزي الممتازآية الكرسيبيب غوارديولاريم علي (ممثلة)مجزرة مستشفى المعمدانيقائمة مباريات الكلاسيكو