Die Reißlänge ist eine charakteristische Materialeigenschaft. Es handelt sich dabei um diejenige Länge, bei der ein frei hängender Querschnitt eines Werkstoffs (zum Beispiel ein Draht) durch seine eigene Gewichtskraft an der Befestigung abreißt.

Berechnung

Die Reißlänge kann aus der im Zugversuch gemessenen Festigkeit und der Dichte berechnet werden. Demnach versagt der Werkstoff, wenn die Belastung durch die Gewichtskraft gleich der Kraft ist, die der Werkstoff aufnehmen kann. Aus diesem Kräftegleichgewicht

ergibt sich durch Auflösen nach die Reißlänge zu

Sie ist definiert als das Verhältnis von Zugfestigkeit zum Produkt aus Dichte und Schwerebeschleunigung . Die Reißlänge wird meist in Kilometer angegeben. In der Textilindustrie ist die Bezeichnung Reißkilometer mit der Abkürzung Rkm üblich. Die Reißlänge ist unabhängig von Größe und Form der Querschnittsfläche, da nicht nur die Festigkeit linear mit der Querschnittsfläche wächst, sondern auch die Masse. Ein Rohr und ein Zylinder gleichen Materials haben, unabhängig von deren Querschnittsfläche, dieselbe Reißlänge.

Das Verhältnis von Zugfestigkeit zur Dichte wird als spezifische Festigkeit bezeichnet:

Bedeutung

Die Reißlänge ist dann eine hilfreiche Kennzahl, wenn die Masse eines Bauteils von Bedeutung ist. Wegen der Äquivalenz von träger und schwerer Masse ist das der Fall, wenn eine Belastung durch das Eigengewicht oder durch Trägheitskräfte verursacht wird.

Beispielsweise ist die Belastung eines Bilderhakens durch sein Eigengewicht auf Grund der Masse vernachlässigbar und bei gegebener Form die Festigkeit als Kenngröße ausreichend. Bei einer Brücke kann die Belastung durch das Eigengewicht die durch Nutzung verursachte Belastung übertreffen. Dann ist der Werkstoff höherer Reißlänge vorzuziehen.

Die Masse eines Bauteils induziert jedoch nicht nur durch die Gravitation eine Belastung, sondern möglicherweise auch durch ihre Trägheit. Deshalb gewinnt die Reißlänge dann an Bedeutung, wenn Bauteile durch starke Beschleunigung großen Trägheitskräften ausgesetzt sind. Dies ist bei Turbinenschaufeln oder Pleuelstangen der Fall.

In der Praxis tritt die Reißlänge bei der Werkstoffauswahl jedoch oft in den Hintergrund, da andere Kriterien wie Kosten, Verarbeitbarkeit oder Beständigkeit dominieren. Ist dann etwa der Werkstoff Stahl alternativlos, ist die Festigkeit entscheidend, da die Dichte von Stählen kaum variiert. Deshalb dient die Reißlänge eher dem technisch-physikalischen Verständnis als der konkreten Arbeit eines Konstrukteurs.

Eine vieldiskutierte Applikation für neue Materialien mit extremen Reißlängen ist der Weltraumfahrstuhl.

Beispiele

Reißlänge verschiedener Materialien
MaterialZugfestigkeit
(MPa)
Dichte
(g/cm³)
Spezifische Reißfestigkeit
(kN·m/kg)
Reißlänge
(km)
Quelle(n)
Beton5,22,4004,350,44
Gummi15,00,92016,301,66
Messing580,08,55067,806,91[1]
Polyamid (Nylon)78,01,13069,007,04[2]
Eichenholz (längs der Faser)60,00,69086,958,86[3]
Polypropylen80,00,90088,889,06[4]
Magnesium275,01,740158,0016,11[5]
Aluminiumlegierung600,02,700222,0022,65[6]
Stahl2.000,07,860254,0025,93[6]
Titan1.300,04,510288,0029,38[6]
Pianodraht, Federstahl2.300,07,860292,0029,82[7]
Bainit2.500,07,870321,0032,40[8]
Balsaholz (längs der Faser)73,00,140521,0053,20[9]
Scifer steel wire (typisch 0,015–0,1 mm Dm.)4.000,0
bis 5.500,0
7,870706,0071,20[8][10]
Kohlenstofffaserverstärkter Kunststoff (Gewebe 0°/90°)1.240,01,580785,0080,00[11]
Siliciumcarbid3.440,03,1601.088,00110,00[12]
Glasfaser (ohne Matrix)3.400,02,6001.307,00133,00[6]
Basaltfaser4.840,02,7001.790,00182,70[13]
1 μm Eisen-Whisker14.000,07,8701.800,00183,00[8]
aromatische Polyester (Vectran)2.900,01,4002.071,00211,00[6]
Kohlenstofffaser (ohne Matrix)4.300,01,7502.457,00250,00[6]
Aramid (Kevlar)3.620,01,4402.514,00256,00[14]
Polyethylen-Faser (Dyneema, Spectra; z. B. Drachenleine)3.510,00,9703.619,00369,00[15]
Zylon5.800,01,5403.766,00384,00[16]
Kohlenstoffnanoröhren63.000,00,037
bis 1,340
46.268,00
bis N/A,00
4.716,00
bis N/A,00
[17][18]
Graphen135.000,02,26055.367,005.655,00
Colossal carbon tube6.900,00,11659.483,006.066,00[19]

Rechenbeispiel:

Bsp. Holz mit Rm = 100 N/mm² und einer Dichte von 500 kg/m³ (Schwerebeschleunigung g ≈ 10 m/s²):

Weblinks

Einzelnachweise