Titan (Element)

chemisches Element mit dem Symbol Ti und der Ordnungszahl 22

Titan ist ein chemisches Element mit dem Elementsymbol Ti und der Ordnungszahl 22. Es gehört zu den Übergangsmetallen und steht im Periodensystem in der 4. Nebengruppe (4. IUPAC-Gruppe) oder Titangruppe. Das Metall ist weiß-metallisch glänzend, hat eine geringe Dichte, ist korrosions- und temperaturbeständig sowie mechanisch fest und duktil.

Eigenschaften
Allgemein
Name, Symbol, OrdnungszahlTitan, Ti, 22
ElementkategorieÜbergangsmetalle
Gruppe, Periode, Block4, 4, d
Aussehensilbrig metallisch
CAS-Nummer

7440-32-6

EG-Nummer231-142-3
ECHA-InfoCard100.028.311
Atomar[1]
Atommasse47,867(1)[2] u
Atomradius (berechnet)140 (176) pm
Kovalenter Radius160 pm
Elektronenkonfiguration[Ar] 3d2 4s2
1. Ionisierungsenergie6.828120(12) eV[3]658.81 kJ/mol[4]
2. Ionisierungsenergie13.5755(25) eV[3]1309.84 kJ/mol[4]
3. Ionisierungsenergie27.49171(25) eV[3]2652.55 kJ/mol[4]
4. Ionisierungsenergie43.26717(19) eV[3]4174.65 kJ/mol[4]
5. Ionisierungsenergie99.299(12) eV[3]9580.9 kJ/mol[4]
Physikalisch[1]
Aggregatzustandfest
Kristallstrukturhexagonal (bis 882 °C, darüber kubisch)
Dichte4,50 g/cm3 (25 °C)[5]
Mohshärte6
Magnetismusparamagnetisch (Χm = 1,8 · 10−4)[6]
Schmelzpunkt1941 K (1668 °C)
Siedepunkt3533 K[7] (3260 °C)
Molares Volumen10,64 · 10−6 m3·mol−1
Verdampfungsenthalpie427 kJ/mol[7]
Schmelzenthalpie18,7 kJ·mol−1
Schallgeschwindigkeit4140 m·s−1 bei 293,15 K
Spezifische Wärmekapazität523[8] J·kg−1·K−1
Austrittsarbeit4,33 eV[9]
Elektrische Leitfähigkeit2,5 · 106 S·m−1
Wärmeleitfähigkeit22 W·m−1·K−1
Mechanisch[1]
E-Modul105 GPa (= 105 kN/mm2)[10]
Poissonzahl0,34[10]
Chemisch[1]
Oxidationszustände+2, +3, +4 = stabil
Normalpotential−0,86 V (TiO2+ + 2 H+ + 4 e
→ Ti + H2O)
Elektronegativität1,54 (Pauling-Skala)
Isotope
IsotopNHt1/2ZAZE (MeV)ZP
44Ti{syn.}49 aε0,26844Sc
45Ti{syn.}184,8 minε2,06245Sc
46Ti8,0 %Stabil
47Ti7,3 %Stabil
48Ti73,8 %Stabil
49Ti5,5 %Stabil
50Ti5,4 %Stabil
51Ti{syn.}5,76 minβ2,47151V
52Ti{syn.}1,7 minβ1,97352V
Weitere Isotope siehe Liste der Isotope
NMR-Eigenschaften
 Spin-
Quanten-
zahl I
γ in
rad·T−1·s−1
Er (1H)fL bei
B = 4,7 T
in MHz
47Ti−5/20−1,5105 · 1072,09 · 10−3011,299
49Ti−7/20−1,5109 · 1073,76 · 10−3011,302
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[11]

Pulver

Gefahrensymbol

Gefahr

H- und P-SätzeH: 250​‐​252
P: 210​‐​222​‐​280​‐​235+410​‐​422​‐​420[11]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Titan wird heute üblicherweise zu den Leichtmetallen gezählt. Mit einer Dichte von 4,50 g/cm3 bei Raumtemperatur ist es deren schwerstes, liegt nahe an der heute meist verwendeten Grenze zwischen Leicht- und Schwermetallen von 5 g/cm3.

In der Erdkruste gehört Titan zu den zehn häufigsten Elementen, kommt jedoch fast ausschließlich chemisch gebunden als Bestandteil von Mineralen vor. Nur in wenigen Lagerstätten ist das Auftreten von elementarem Titan nachgewiesen.

Geschichte

Titan wurde 1791 in England von dem Geistlichen und Amateurchemiker William Gregor im Titaneisen entdeckt. Nur zwei Jahre nach der Veröffentlichung von Gregors Entdeckung trennte der deutsche Chemiker Martin Heinrich Klaproth von einer in Boinik (Ungarn) gefundenen Probe roten Schörls das Mineral Rutil (TiO2) ab. Als er seine Ergebnisse 1795 veröffentlichte, verwies er auf Gregors Arbeit und die Ähnlichkeit des von ihm gefundenen Oxids und bezeichnete Gregors Mineral als „Eisenhaltiges Titanit aus Cornwall“. Er gab damit dem Element – angelehnt an das griechische Sagengeschlecht der Titanen – seinen heutigen Namen.[12][13][14]

Es gelang jedoch erst im Jahre 1831 Justus von Liebig, aus dem Erz unreines metallisches Titan in Form eines dunkelvioletblaues Pulvers oder von zusammenhängenden kupferglänzenden Blättern zu gewinnen.[15][16]

Die Herstellung von reinem Titan gelang erstmals 1875 dem russischen Chemiker Dmitri Kirillowitsch Kirillow.[12][17] Seine Veröffentlichung unter dem Namen „Forschungen über Titan“ (russisch Исследования над титаном), in dem er die Ergebnisse seiner Experimente zur Isolierung von reinem Titan behandelte, blieb jedoch unbeachtet. Im Jahr 1887 gelang Lars Fredrik Nilson (Entdecker des Elements Scandium) und Otto Pettersson (Chemieprofessoren an der Universität Uppsala bzw. der Universität Stockholm) die Herstellung von Titan mit einer Reinheit von 95 Prozent, indem sie Titantetrachlorid mit Natrium in einem luftdichten Stahlzylinder reduzierten. Dabei entstanden gelbe Schuppen mit bläulicher Oberfläche. Der französischen Chemiker Henri Moissan veröffentlichte 1895 ein Verfahren, mit dem er Titan mit einer Reinheit von 97 % gewinnen konnte.[12][18] Zu 99,9 % reines Titan stellte 1910 erstmals Matthew A. Hunter (1878–1961) mit dem Hunter-Verfahren her, indem er in einer Stahlbombe Titantetrachlorid (Titan(IV)-chlorid) mit Natrium auf 700 °C bis 800 °C erhitzte. Doch auch seine gewonnene Materialprobe war durch vorhandene Verunreinigungen bei normalen Temperaturen spröde und ließ sich nur bei Rotglut gut formen.[19][12] Erst 1925 konnten Anton Eduard van Arkel und Jan Hendrik de Boer mit Hilfe des Van-Arkel-de-Boer-Verfahrens Titan von hoher Reinheit darstellen, welches sich als auffällig duktil zeigte.[20]

Ende der 1930er Jahre entwickelte William Justin Kroll schließlich ein für die Technik geeignetes Verfahren, den sogenannten Kroll-Prozess, das 1940 patentiert wurde.[21] In der Folge konnte durch Einführung der großtechnischen Reduktion von Titantetrachlorid mit Magnesium das Titan für kommerzielle Anwendungen erschlossen werden. Die erste Pilotanlage welche 100 lb Stücke (je ca. 45 kg) produzieren konnte, wurde 1944 in Boulder City, Nevada, USA, errichtet.[14]

In den Vereinigten Staaten stiegen Ende der 1940er/Anfang der 1950er Jahre mehrere Unternehmen mit starker staatlicher Unterstützung in das Titangeschäft ein. So steigerte eine 1947 von DuPont errichtete Pilotanlage die Produktion bis 1952 auf 800 t Titanschwamm pro Jahr. Im Vereinigten Königreich begann die Imperial Chemical Industries Ltd. 1948 mit der Produktion von Titanschwamm. In Kontinentaleuropa wurde das Schmelzen und die Herstellung von Barren etwa 1955 begonnen und durch Unternehmen in Frankreich, Deutschland und Schweden durchgeführt. Die Geburtsstunde der sowjetischen Titanindustrie war das Jahr 1950 und die Produktion von Titanschwamm nach dem Kroll-Prozess begann im Jahr 1954. Auch in Japan begann ab 1952 die Produktion von Titanschwamm.[22]

In den frühen 1950er Jahren wurden Titanlegierungen mit verbesserten Eigenschaften durch Zusatz von Aluminium, Mangan und Vanadium entdeckt. So die Legierungen Ti-8Mn, Ti-4Al-4Mn (1951) und die viel verwendete Legierung Ti-6Al-4V (1954), die von Crucible Steel patentiert und zuerst im Triebwerk Pratt & Whitney J57 für die Lockheed U-2 eingesetzt wurde. Die erste Beta-Legierung, B120VCA (Ti-13V-11Cr-3Al), wurde ebenfalls von Crucible Steel entwickelt und in großem Umfang für das Aufklärungsflugzeug SR-71 (1955) verwendet. Siliziumzusätze für den Einsatz bei höheren Temperaturen wurden 1956 in Großbritannien eingeführt. Im Rolls-Royce Avon-Triebwerk wurde bereits ab 1954 Ti-2Al-2Mn verwendet. Zur etwa gleichen Zeit fand Titan als Material in korrosiven Umgebungen und für medizinische Implantate Anwendung.[22]

Seit diesen Jahren stieg die Produktion von Titanlegierungen für Flugzeuge stark an und erreichte zwischen 2003 und 2007, mit der Einführung des Airbus A380, des Joint Strike Fighter (JSF, F-35) und der Boeing 787 (sowie den militärischen Konflikten im Irak und in Afghanistan), einen Höchstwert.[22]

Vorkommen und Abbau

Titan kommt in der Erdkruste kaum in elementarer, d. h. metallischer Form, sondern beinahe ausschließlich als Bestandteil von chemischen Verbindungen vor. Es ist keineswegs selten, steht es doch mit einem Gehalt von 0,565 % an 9. Stelle der Elementhäufigkeit in der kontinentalen Erdkruste.[23] Meist ist es nur in geringer Konzentration vorhanden.

Die wichtigsten Minerale, die Titan enthalten, sind aufgrund dessen hoher Sauerstoffaffinität oxidische Verbindungen wie:

Die bekannten Hauptvorkommen liegen in Australien, China, Norwegen, Indien, Russland, Ukraine, Brasilien, Kanada und Südafrika. Im Jahr 2010 wurden auch in Paraguay Lagerstätten entdeckt[24], die aber bisher kaum genutzt werden. 2020 wurden weltweit 8,4[25] bis 8,6[26] Millionen Tonnen Titan (gemessen als TiO2) abgebaut. Hauptabbauland war China, weitere große Abbauländer waren Australien, Mosambik, Südafrika, Kanada und die Ukraine. 90 % der abgebauten Titanminerale waren dabei Ilmenit und der Großteil wurde zur Erzeugung von TiO2-Pigmenten für Farbstoffe, Papier und Kunststoffe verwendet. In den USA betrug dieser Anteil 2021 95 %, aus den restlichen 5 % wurden Überzüge für Schweißstäbe, Carbide, Chemikalien oder metallisches Titan hergestellt.[26] Titan steht auf der Liste kritischer Rohstoffe der USA[27] und wurde 2020 auch von der EU neu in die Liste kritischer Rohstoffe aufgenommen.[28]

Meteoriten können Titan enthalten. In der Sonne und in Sternen der Spektralklasse M wurde ebenfalls Titan nachgewiesen. Auf dem Erdmond sind ebenso Vorkommen vorhanden.[29][30] Gesteinsproben der Mondmission Apollo 17 enthielten bis zu 12,1 % Titan(IV)-oxid. Auch in Kohleaschen und Pflanzen ist es enthalten.

Globaler Abbau von Titan[25]
Land20162017201820192020
(in Tonnen TiO2)
Australien  Australien1e1.070.000993.000875.250780.465830.800
Brasilien  Brasilien1e37.66066.93073.09081.65061.940
Kanada  Kanada2n550.000670.000620.000550.000480.000
China Volksrepublik  Volksrepublik China1e1.196.0001.242.0001.932.0002.306.9002.911.800
Indien  Indien2n341.400167.800172.700205.200205.000
Iran  Iran2n3.34030.63030.0004.8805.000
Kasachstan  Kasachstan2n66.60065.00065.00060.00028.000
Kenia  Kenia1n339.480345.560340.150262.660256.410
Korea Sud  Südkorea1e91.800122.670117.250162.790158.340
Madagaskar  Madagaskar1e152.100230.700214.000258.800220.500
Malaysia  Malaysia1e5.9908.50012.6006.9307.010
Mosambik  Mosambik1e731.200725.200701.400786.900874.000
Norwegen  Norwegen1e260.000238.200176.370211.280229.780
Russland Russland1e18.8802.9003.0003.1003.000
Senegal  Senegal1e238.120280.320287.940281.030291.740
Sierra Leone  Sierra Leone1a156.570190.480145.400165.180135.930
Sudafrika  Südafrika2n950.0001.090.0001.000.000970.000950.000
Sri Lanka  Sri Lanka1e16.51030.63035.67025.94011.150
Thailand  Thailand1e04236484
Turkei  Türkei1e4.7506.3706.1756.1306.455
Ukraine Ukraine1e339.800430.300518.950564.050537.430
Vereinigte Staaten  Vereinigte Staaten1e55.00066.000100.000100.000100.000
Vietnam  Vietnam3e109.620117.160122.250112.680119.810
Gesamt6.734.8207.120.3547.549.2187.906.6298.424.179

Gewinnung

Reines, metallisches Titan kommt in Lagerstätten kaum vor und wird deshalb aus Titaneisenerz (Ilmenit) oder Rutil gewonnen. Der dabei verwendete Herstellungsprozess ist sehr aufwendig, was sich im hohen Preis für Titan niederschlägt. Der Weltmarktpreis ist Schwankungungen unterworfen, insbesondere seit dem Boykott westlicher Staaten gegen Russland. Titan in Barrenform war Ende 2023 für rund 10,5 US$ pro kg aus China erhältlich[31] und damit günstiger als noch im Jahr 2022. Titan als Metall und auch seine Legierungen sind generell teurer als Aluminiumlegierungen oder Stähle.

Seit Entdeckung des Kroll-Prozesses ist die Herstellung fast unverändert. Meist vom Ilmenit oder Rutil ausgehend, wird Titandioxid in der Hitze mit Chlor und Kohle zu Titantetrachlorid und Kohlenstoffmonoxid umgesetzt (siehe chemische Formeln und Abbildung). Anschließend erfolgt mit flüssigem Magnesium die elektrochemische Reduktion des Titantetrachlorids zu Titan-Schwamm. Pro Tonne Titan werden etwa 55.000 kWh[32] elektrische Energie benötigt, was circa 3,7 mal soviel ist wie bei der ebenfalls energieintensiven Aluminiumherstellung mit rund 15.000 kWh/t[33]. Das Verfahren ist nur in Ländern mit geringen Kosten für elektrische Energie rentabel, also nicht in Mitteleuropa. Deshalb ist Recycling wirtschaftlich und ökologisch besonders sinnvoll.

Titan-„Schwamm“, 99,7 %, gewonnen nach dem Kroll-Prozess

Im letzten Reaktionsschritt kann alternativ Natrium statt Magnesium verwendet werden.[34]

Kroll-Prozess zur Titan-Gewinnung

Zur Herstellung von kompaktem Metall wird der poröse Titanschwamm im Vakuum-Lichtbogenofen oder seltener mit dem Elektronenstrahl bei über 1700 °C umgeschmolzen. Dieser Prozess ist technologisch sehr anspruchsvoll, da Titan im glühenden Zustand so reaktionsfreudig ist, dass es mit fast allen Materialien, mit denen es in Kontakt kommt, verunreinigt wird. Diese Verunreinigung kann zur Versprödung und zum Verlust der nützlichen Eigenschaften führen. Folglich ist es eine Herausforderung, ein geeignetes Material zu finden, das Titan im geschmolzenen Zustand enthält und Verunreinigungen vermeidet.[22] Schon in den 1950er-Jahren kamen Metallurgen zu der Erkenntnis, dass man Titan nicht in einem üblichen keramischen Tiegel schmelzen kann, weil es der Keramik Sauerstoff entzieht. Auch in Graphit lässt es sich nicht folgenlos schmelzen, weil es mit dem Kohlenstoff reagiert und das Metall dadurch spröde wird.[14] Deshalb werden u. a. wassergekühlte Kupfertiegel verwendet[35].

Globale Erzeugung von Titanschwamm, geschätzt[36][37]
Land20192020
(in Tonnen)
China Volksrepublik  Volksrepublik China85.000123.000
Indien  Indien250250
Japan  Japan49.00049.200
Kasachstan  Kasachstan16.00015.000
Russland Russland44.00031.000
Saudi-Arabien  Saudi-Arabien1002.800
Ukraine Ukraine8.0005.000
Vereinigte Staaten  Vereinigte StaatenGeschäftsgeheimnisGeschäftsgeheimnis
Gesamt ohne USA (gerundet)200.000230.000
Titan Crystal Bar, 99,995 %, hergestellt nach dem Van-Arkel-de-Boer-Verfahren

Ultrareines Titan gewinnt man nach dem Van-Arkel-de-Boer-Verfahren. Da es sich um einen Gasphasenprozess handelt, ist die Produktionsrate relativ gering; es entsteht kein Schwamm als Zwischenprodukt, sondern unmittelbar kompaktes Titan.

Eigenschaften

Chemische Eigenschaften

Oxidationszustände von Titan
+2TiO, TiCl2
+3Ti2O3, TiCl3, TiF3, TiP
+4TiO2, TiS2, TiCl4, TiF4
Zylinder aus reinem Titan
Hochreines Titan mit opalisierender Oberfläche

Titan kann die Oxidationszustände 2, 3 und 4 einnehmen. Nur die Verbindungen mit dem Oxidationszustand 4 sind stabil.

Titan bildet an der Luft spontan eine äußerst beständige oxidische Schutzschicht (Passivierungsschicht) aus, die es gegen viele Medien schützt.

Zu beachten ist die hohe Reaktivität von Titan mit vielen Medien bei erhöhten Temperaturen oder erhöhtem Druck, wenn die Passivierungsschicht diesen Bedingungen nicht standhält. Hier kann die Reaktionsgeschwindigkeit bis zur Explosion anwachsen. In reinem Sauerstoff bei 25 °C und 25 bar verbrennt Titan von einer frischen Schnittkante ausgehend vollständig zum Titandioxid. Trotz Passivierungsschicht reagiert es bei Temperaturen oberhalb von 880 °C mit Sauerstoff, bei Temperaturen ab 550 °C mit Chlor. Titan reagiert („brennt“) auch in reinem Stickstoff.

Gegen verdünnte Schwefelsäure, Salzsäure, chloridhaltige Lösungen, kalte Salpetersäure, Laugen wie Natriumhydroxid und die meisten organischen Säuren ist Titan beständig, löst sich dagegen in konzentrierter Schwefelsäure unter Bildung des violetten Titansulfats langsam auf. Wegen der Explosionsgefahr sind bei Anwendungen in Chlorgas die Sicherheitsvorschriften strikt einzuhalten.

Titan in Pulverform ist pyrophor, also selbstentzündlich. Schon bei Raumtemperatur reagiert es mit der umgebenden Luft, die Reaktionswärme erhitzt das Material bis sich unter Beschleunigung der Reaktion eine rauchende Flamme ausbildet. Die Zündbereitschaft hängt unter anderem sehr stark von der Korngröße und dem Verteilungsgrad ab. Das Metall in kompakter Form ist nicht brennbar. Es nimmt jedoch bei höheren Temperaturen leicht Sauerstoff, Stickstoff und Wasserstoff auf, dies bewirkt Versprödung und Härtesteigerung.[11]

Ein Eisbad mit Wasserstoffperoxid nach der Zugabe der in konzentrierten Schwefelsäure gekochten Probe enthält

Nachweis

TiO2+ bildet mit Wasserstoffperoxid einen charakteristischen gelb-orangen Komplex (Triaquohydroxooxotitan(IV)-Komplex), der auch zum photospektrometrischen Nachweis geeignet ist. Die Probe wird mit einem Überschuss konzentrierter Schwefelsäure gekocht und in ein Eisbad mit Wasserstoffperoxid gegossen. Bei lautem Zischen färbt sich das Eisbad gelb-orange[38][39].

Aufgrund der großen farblichen Ähnlichkeit wird dieser Nachweis umgangssprachlich auch als „Tequila Sunrise-Nachweis“ bezeichnet.

Kristallstruktur

Titan kristallisiert im Magnesium-Typ mit der Raumgruppe P63/mmc (Raumgruppen-Nr. 194)Vorlage:Raumgruppe/194 in einer hexagonal dichtesten Kugelpackung mit a = 295,04 pm sowie c = 468,33 pm[40] und bildet dann die sogenannte α-Phase (siehe links in der Abbildung). Das Achsenverhältnis c/a beträgt 1,587 und weicht leicht vom Idealwert 1,633[41] der hexagonal dichtesten Kugelpackung ab. Bei Erhitzung auf über 882 °C bildet sich die β-Phase, die ein raumzentriertes Gitter darstellt (siehe rechts in der Abbildung). Die β-Phase kann in Titanlegierungen schon bei Raumtemperatur auftreten, wenn sie Vanadium, Niobium oder Tantal als Legierungselement enthalten.

α-Phase und β-Phase im Vergleich

Elektrische Leitfähigkeit

Die elektrische Leitfähigkeit von Titan beträgt nur S/m und damit erheblich weniger als bei Kupfer und Aluminium, die in der Elektrotechnik als Leiterwerkstoffe verwendet werden. Unterhalb einer Temperatur von 0,4 K[42] wird Titan supraleitend.

(Hinweis: Weitere physikalische Kennwerte sind in der großen Tabelle zu Beginn des Artikels zu finden)

Farbgebung

Titan kann durch gezieltes Erzeugen einer Oxidschicht mittels Anodisieren farblich gestaltet werden. Dabei wird die Farbe durch Lichtbrechung an unterschiedlich dicken Schichten und nicht durch Farbpigmente erzielt, vgl. Dünnschichtinterferenz. Bei 10–25 nm Schichtdicke ergibt sich eine Goldfarbe, bei 25–40 nm Lila, bei 40–50 nm Dunkelblau, bei 50–80 nm Hellblau, bei 80–120 nm Gelb, bei 120–150 nm Orange, bei 150–180 nm Lila, bei 180–210 nm Grün.

Reintitan als Werkstoff

Für Anwendungen steht reines, d. h. unlegiertes Titan in vier unterschiedlichen Reinheitsgraden zur Verfügung[43]:

Der Reinheitsgrad (englisch „grade“) nimmt von Titan Grade 1 bis Titan Grade 4 ab. Die wichtigsten Begleitelemente sind Eisen, Kohlenstoff, Stickstoff, Sauerstoff und Wasserstoff, deren Konzentration jedoch immer deutlich unter 1 % liegt. Die Festigkeit nimmt von Titan Grade 1 in Richtung Titan Grade 4 zu, während die Duktilität in derselben Richtung abnimmt.

Obwohl Reintitan keine metallischen Legierungselemente enthält, hat es für eine Reihe von Anwendungen eine ausreichende Festigkeit. (Hierin unterscheidet sich Titan von dem Metallen Eisen und Aluminium, die nur durch zusätzliche Legierungselemente eine hohe Festigkeit erreichen). Der Elastizitätsmodul beträgt 105 000 - 110 000 N/mm² und ist damit etwa halb so groß wie der von Stahl. Die Zugfestigkeit hängt außer vom Reinheitsgrad auch von der Wärmebehandlung ab und liegt zwischen 290 und 740 N/mm²[43], also im Bereich von vielen Stählen, jedoch bei geringerer Dichte (4,5 g/cm³ statt rund 7,9 g/cm³).

Die Duktilität von Reintitan reicht aus, um es kalt oder warm zu verformen. Hierbei tritt Kaltverfestigung auf. Bei höheren Temperaturen versprödet es an Luft durch Aufnahme von Sauerstoff, Stickstoff und Wasserstoff.

Titanlegierungen

Die mechanischen Eigenschaften und das Korrosionsverhalten lassen sich durch meist geringfügige Legierungszusätze von Aluminium, Vanadium, Mangan, Molybdän, Palladium, Kupfer, Zirconium und Zinn erheblich verbessern. Dadurch sind Titanlegierungen besonders für Anwendungen geeignet, bei denen es auf hohe Korrosionsbeständigkeit, Festigkeit und geringes Gewicht ankommt. Oberhalb einer Temperatur von 400 °C gehen die Festigkeitseigenschaften aber zurück.

Mikroskopisches Schliffbild von Ti-6Al-4V. Die α-Phase ist hell, die β-Phase ist dunkel.

Abhängig davon, welche Phasen in den Titan-Legierungen vorkommen, unterscheidet man zwischen:

Die folgende Tabelle erläutert, welche Legierungselemente die Bildung der α-Phase oder der β-Phase bewirken und fasst die wesentlichen Eigenschaften der Legierungstypen zusammen.

α-Ti-Legierungβ-Ti-Legierungα+β-Ti-Legierung
KristallstrukturGitter mit hexa-gonal dichtester Packungkubisch raum-zentriertes Gitterzweiphasig: Gitter von α-Ti und von β-Ti
phasenbestimende

Legierungselemente

AluminiumVanadium, Niobium, Tantalentsprechend α und β
Umformbarkeitnur bei erhöhter Temperaturbei Raumtem-peratur möglichschwierig bei Raumtemperatur, Warmumformung bevorzugt
mechanische Eigenschaftenmittlere Festigkeit; gute Tempera-turbeständigkeithohe Festigkeit; geringere Temperaturbes-tändigkeit als α-Ti; geringerer Elasti-

zitätsmodul als α-Ti

hohe Festigkeit und hohe Schwingfestigkeit; gute Temperatur-beständigkeit

Titan-Legierungen werden häufig nach dem US-amerikanischen Standard ASTM mit Grade 5 bis 39 charakterisiert.[44][45]

Ti-6Al-4V

Der wirtschaftlich bedeutendste (auch für Turbolader-Schaufeln) eingesetzte[46] Werkstoff Ti-6Al-4V („Ti64“; 6 % Aluminium, 4 % Vanadium, ASTM: Grade 5) hat die Nummer 3.7165 für industrielle Anwendungen und 3.7164 für Luftfahrtanwendungen.[47] Er gehört zum Typ der α+β-Ti-Legierungen.

Weitere wichtige Titanlegierungen, die hauptsächlich in der Luftfahrtindustrie eingesetzt werden:

BezeichnungLegierungs-Zusammensetzung (in %)Elastizitätsmodul in GPaDichte in g·cm−3
Ti6246Ti-6Al-2Sn-4Zr-6Mo125,44,51
Ti6242Ti-6Al-2Sn-4Zr-2Mobis 1144,50

Die Zugfestigkeit von Titanlegierungen liegt mit 290 bis 1200 N/mm²[48] im Bereich von Baustahl mit 310 bis 690 N/mm²[49] und legierten Stählen mit 1100 bis 1300 N/mm²[50].

Ti-6Al-4V wird wie die meistens anderen Titanlegierungen bei erhöhter Temperatur umgeformt, d. h. heiß geschmiedet oder warm gewalzt. Bei der Herstellung von Blechen aus Blöcken macht z. B. Walzen ca. 50 % der gesamten Kosten des Produktes aus. Beim Verformen von Titanlegierungen tritt ähnlich wie bei rostfreiem Stahl Verfestigung auf.

Bei spanender Bearbeitung tritt Hitzeentwicklung auf, wobei reines Argon als Schutzgas eingesetzt wird. Um die Werkzeugschneiden zu schonen, kann der Einsatz eines flüssigen Kühlmittels zweckmäßig sein.[51]

Verwendung

Titan-Verdichterschaufeln eines Strahltriebwerkes

Konstruktionsteile:

Die SR-71 besteht zum größten Teil aus Titan
Hochton-Lautsprecher mit Titanmembran (25 mm Durchmesser) einer Lautsprecherbox JBL TI 5000, 1990er Jahre

Anwendungen in Seewasser und chloridhaltigen Medien:

Schutzausrüstung Militär und Polizei:

Medizin:

Outdoor- und Sportartikel:

Elektronik:

Elektrische Zigaretten:

Sonstige Anwendungsgebiete:

Armbanduhr mit Titan-Armband bzw. -Gehäuse
„Funkelnder Wirbel“ aus Titan (blau), Gelb- und Weißgold, Zirconium und Diamant

Verwendung als Legierungselement:

Verwendung als Bestandteil von Verbindungen:

Normen

Titan und Titanlegierungen sind unter anderem genormt in:

Sicherheitshinweise

Titan ist als Pulver feuergefährlich, kompakt ungefährlich. Die meisten Titansalze gelten als harmlos. Unbeständige Verbindungen wie Titantrichlorid sind stark korrosiv, da sie schon mit Spuren von Wasser Salzsäure bilden.

Titantetrachlorid wird in Rauchgranaten eingesetzt; es reagiert mit der Luftfeuchte und bildet einen weißen Rauch aus Titandioxid, außerdem Salzsäurenebel.

Biologische Nachteile des Titans im menschlichen Körper sind zurzeit unbekannt. So lösten die bisher aus Titan hergestellten Hüftgelenke oder Kieferimplantate, im Gegensatz zu Edelstahl, welcher Nickel enthält, keinerlei Allergien aus.[15]

Verbindungen

Während metallisches Titan wegen der hohen Herstellungskosten nur anspruchsvollen technischen Anwendungen vorbehalten bleibt, ist das relativ preiswerte und ungiftige Farbpigment Titandioxid ein Begleiter des alltäglichen Lebens geworden. Praktisch alle heutigen weißen Kunststoffe und Farben und auch Lebensmittelfarben enthalten Titandioxid (es ist in Lebensmitteln als E 171 zu finden). Aber auch in der Elektro- und Werkstofftechnik und neuerdings auch in der Herstellung von Hochleistungsakkumulatoren für den Fahrzeugantrieb (Lithium-Titanat-Akku) werden Titanverbindungen eingesetzt.

Oxide

Pulverförmiges Titan(IV)-oxid
Die kubische Natriumchlorid-Struktur von Titan(II)-oxid

Das wichtigste Titanoxid ist Titan(IV)-oxid (TiO2), das in drei wichtigen Polymorphen vorliegt: Anatas, Brookit und Rutil. Sie nehmen polymere Strukturen an, in denen Titan von sechs Oxidliganden umgeben ist. Es ist eine Vielzahl von reduzierten Oxiden (Suboxiden) von Titan bekannt, hauptsächlich reduzierten Stöchiometrien von Titan(IV)-oxid, die durch atmosphärisches Plasmaspritzen erhalten werden. Ti3O5 ist ein purpurroter Halbleiter, der durch Reduktion von Titan(IV)-oxid hergestellt wird mit Wasserstoff bei hohen Temperaturen und wird industriell eingesetzt, wenn Oberflächen mit Titan(IV)-oxid bedampft werden müssen: Es verdampft als reines Titan(II)-oxid, während Titan(IV)-oxid als Gemisch aus Oxiden verdampft und Beschichtungen mit variablem Brechungsindex abscheidet.[55] Bekannt ist auch Titan(III)-oxid mit der Korund-Struktur und Titan(II)-oxid mit der Natriumchlorid-Struktur.

Sulfide

Titan(IV)-sulfid bildet Kristalle, die eine Schichtstruktur aufweisen, nämlich die Cadmiumiodid-Struktur.[56] Es kann als Elektrodenmaterial in Lithiumbatterien oder Lithium-Ionen-Akkumulatoren verwendet werden, wobei das niedrige Atomgewicht von Titan von Vorteil ist.

Titanate

Titanate werden als Keramikmaterial verwendet. Viele, zum Beispiel Bleititanat, Blei-Zirkonat-Titanat, Bariumtitanat und Strontiumtitanat, bilden Ionenkristalle mit Perowskit-Struktur der Raumgruppe Pm3m (Raumgruppen-Nr. 221)Vorlage:Raumgruppe/221 mit ferroelektrischen Eigenschaften aus.[57] Bariumtitanat weist piezoelektrische Eigenschaften auf und wird als Wandler bei der Umwandlung von Schall und Elektrizität verwendet. Tetraisopropylorthotitanat ist als Lewis-Säure ein wichtiger Katalysator für Veresterungs- und Umesterungsreaktionen und für Sharpless-Epoxidierungen und ist Ausgangsmaterial für ultradünne Titan(IV)-oxid-Schichten und -Nanopartikel.

Halogenide

Titan(III)-chlorid-Lösung

Titan bildet je nach Oxidationszustand verschiedenartige Halogenide. Titan(IV)-chlorid ist eine farblose flüchtige Flüssigkeit, die an der Luft unter spektakulärer Emission weißer Wolken hydrolysiert. Beim Kroll-Prozess wird es bei der Umwandlung von Titanerzen zu Titan(IV)-oxid erzeugt.[58] In der organischen Chemie wird es als Lewis-Säure verwendet, beispielsweise bei der Mukaiyama-Aldolreaktion.[59] Beim Van-Arkel-de-Boer-Verfahren wird Titan(IV)-iodid zur Herstellung von hochreinem Titanmetall erzeugt.

Titan(III)-fluorid, Titan(III)-chlorid, Titan(III)-bromid und Titan(III)-iodid bilden verschiedene Kristallstrukturen aus. Titan(III)-chlorid kommt in vier verschiedenen Strukturen vor, die unterschiedliche chemische Eigenschaften haben.

Titan(II)-chlorid, Titan(II)-bromid und Titan(II)-iodid sind kristalline Feststoffe und haben eine trigonale Kristallstruktur vom Cadmium(II)-iodid-Typ (Polytyp 2H) mit der Raumgruppe P3m1 (Raumgruppen-Nr. 164)Vorlage:Raumgruppe/164.[60]

Weitere anorganische Verbindungen

Titannitrid bildet goldgelbe Kristalle. Titancarbid ist ein graues Pulver. Beide haben ähnliche Eigenschaften: Sie bilden ein kubisches Gitter, sind extrem hart, haben eine hohe thermodynamische Stabilität, eine hohe Wärmeleitfähigkeit und elektrische Leitfähigkeit sowie einen sehr hohen Schmelzpunkt und Siedepunkt.[61] Titanborid wird zusammen mit Bornitrid als Material für Verdampferschiffchen verwendet. In kleinerem Umfang wird es als Versuchsmaterial für Kathoden von Aluminium-Schmelzflusselektrolysezellen und als Panzermaterial sowie als Ersatz für Diamantstaub und für Beschichtungen verwendet. Durch Einlagerung von Titanborid-Partikeln in Aluminium lassen sich die Eigenschaften des Aluminiums verbessern.

Titanylsulfat wird als Nachweisreagenz für Wasserstoffperoxid und Titan verwendet, da sich bei dessen Anwesenheit das intensiv orangegelb gefärbte Peroxotitanyl-Ion (TiO2)2+ bildet. Dieser Nachweis ist sehr empfindlich und es lassen sich schon Spuren von Wasserstoffperoxid nachweisen. Es entsteht auch als Zwischenprodukt beim Sulfatverfahren zur Herstellung von Titan(IV)-oxid.

Titandihydrid ist ein in Reinform metallisch glänzendes Pulver. Sonst ist es hellgrau und kann eine durch Sauerstoff- oder Stickstoffspuren blau oder gelb getönte Oberfläche aufweisen. Es wird als Treibmittel zur Herstellung von Metallschäumen verwendet. Es wird mit Metallpulver vermischt und das Gemisch dann bis fast zum Schmelzpunkt des Metalls erhitzt, das Titandihydrid setzt dabei Wasserstoffblasen frei, wodurch Metallschaum entsteht.

Metallorganische Komplexe

Festes Titanocendichlorid

Titanocendichlorid mit der Halbstrukturformel [Ti(Cp)2Cl2] oder auch [Ti(C5H5)2Cl2], ist ein Metallocen des Titans, das heißt eine metallorganische Verbindung mit aromatischen Ringsystemen. Es kann aus Titan(IV)-chlorid und Cyclopentadien gewonnen werden.[62]

Literatur

Weblinks

Commons: Titan (Element) – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Titan – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

Abgerufen von „https:https://www.search.com.vn/wiki/index.php?lang=de&q=Titan_(Element)&oldid=244071084
🔥 Top keywords: Wikipedia:HauptseiteSpezial:SucheGeborgtes WeißSpecial:MyPage/toolserverhelferleinconfig.jsPornhubWichart von RoëllFallout (Fernsehserie)HalvaListe der größten AuslegerbrückenUEFA Champions LeagueKatastrophe auf der EnterpriseSeparatorenfleischBernd HölzenbeinXHamsterBørsen (Gebäude)Louis SalomonChatGPTSusanne WolffLiebe (2012)17. AprilHauptseiteNekrolog 2024BarockDatei:Germany adm location map.svgFriedrichshafenDeutschlandTian’anmen-MassakerRockyFallout (Computerspielreihe)Halyna HutchinsIranUEFA Champions League 2023/24Antonio RüdigerAnnalena BaerbockO. J. SimpsonJerrie MockNosferatu-SpinneMarcel SabitzerKlimbim