User:Hazelorb/Time zone

A time zone is a region on Earth, more or less bounded by lines of longitude, that has a uniform, legally mandated standard time, usually referred to as the local time. By convention, the 24 main time zones on Earth compute their local time as an offset from UTC, which reconciles solar time and atomic time. Time zones proceed eastward from the UTC time zone centered on 0°, increasing by one hour for each 15°, up to the International Date Line at longitude 180°. Time zones have significance in travel, politics, technology, communication and commerce, and are also impacted by astronomy.

History

Before the adoption of time zones, people used local solar time. Originally this was apparent or true solar time, as shown by a sundial, and later it became mean solar time, as kept by most mechanical clocks. Mean solar time has days of equal length, but the difference between mean and apparent solar time, called the equation of time, averages to zero over a year.

The use of local solar time became increasingly awkward as railways and telecommunications improved, because clocks differed between places by an amount corresponding to the difference in their geographical longitude, which was usually not a convenient number. This problem could be solved by synchronizing the clocks in all localities, but in many places the local time would then differ markedly from the solar time to which people were accustomed. Time zones are a compromise, relaxing the complex geographic dependence while still allowing local time to approximate the mean solar time.

The increase in worldwide communication has further increased the need for interacting parties to communicate mutually comprehensible time references to one another. Thus, the advance of technology has both forced (rail transport) and enabled (modern timepieces) the development of arbitrary official "time."

1. pre time zones.2. why they were developed3. how were they developed by longitude4. how were they developed by politics

Regional necessity

Plaque commemorating the Railway General Time Convention of 1883

Greenwich Mean Time (GMT) was established in 1675 when the Royal Observatory was built as an aid to (English) mariners to determine longitude at sea. At the time, each town's local clock in the area was calibrated to its local noon. Therefore, each clock across England had a slightly different time. The first time zone in the world was established by British railway companies on December 1, 1847—with GMT kept by portable chronometers. This quickly became known as Railway Time. About August 23, 1852, time signals were first transmitted by telegraph from the Royal Observatory, Greenwich. Even though 98% of Great Britain's public clocks were using GMT by 1855, it was not made Britain's legal time until August 2, 1880. Some old clocks from this period have two minute hands—one for the local time, one for GMT.[1] This only applied to the island of Great Britain, not to the island of Ireland.

On November 2, 1868, the then-British colony of New Zealand officially adopted a standard time to be observed throughout the colony, and was perhaps the first country to do so. It was based on the longitude 172°30′ East of Greenwich, that is 11 hours 30 minutes ahead of GMT. This standard was known as New Zealand Mean Time.

Timekeeping on the American railroads in the mid 19th century was somewhat confused. Each railroad used its own standard time, usually based on the local time of its headquarters or most important terminus, and the railroad's train schedules were published using its own time. Some major railroad junctions served by several different railroads had a separate clock for each railroad, each showing a different time; the main station in Pittsburgh, Pennsylvania, for example, kept six different times. One can imagine the confusion for travelers making a long journey that involved several changes of train.

Charles F. Dowd proposed a system of one-hour standard time zones for American railroads about 1863, although he published nothing on the matter at that time and did not consult railroad officials until 1869. In 1870, he proposed four ideal time zones (having north–south borders), the first centered on Washington, D.C., but by 1872 the first was centered 75°W of Greenwich, with geographic borders (for example, sections of the Appalachian Mountains). Dowd's system was never accepted by American railroads. Instead, U.S. and Canadian railroads implemented a version proposed by William F. Allen, the editor of the Traveler's Official Railway Guide.[2] The borders of its time zones ran through railroad stations, often in major cities. For example, the border between its Eastern and Central time zones ran through Detroit, Buffalo, Pittsburgh, Atlanta, and Charleston. It was inaugurated on Sunday, November 18, 1883, also called "The Day of Two Noons", when each railroad station clock was reset as standard-time noon was reached within each time zone. The zones were named Intercolonial, Eastern, Central, Mountain, and Pacific. Within one year, 85% of all cities with populations over 10,000, about 200 cities, were using standard time.[3] A notable exception was Detroit (which is about half-way between the meridians of eastern time and central time), which kept local time until 1900, then tried Central Standard Time, local mean time, and Eastern Standard Time before a May 1915 ordinance settled on EST and was ratified by popular vote in August 1916. The confusion of times came to an end when Standard zone time was formally adopted by the U.S. Congress on March 19, 1918, in the Standard Time Act.

U.S. Commissioner of Railroads William H. Armstrong gave the following account of the new railroad time system in his Report to the Secretary of the Interior for 1883.

The question of uniform time standards for railways of the United States has long attracted the attention of railway managers, but Mr. W. F. Allen, editor of the Traveler's Official Guide, and secretary of the time conventions, is entitled to the credit of having perfected the admirable system which was adopted by the general time convention of railway managers, held at Chicago, October 11, 1883, and ratified by the southern railway time convention, held at New York, October 17, 1883.

As this is a subject of great interest to the entire country, a brief synopsis of the general principles governing the proposed plan is deemed appropriate in this report.

Under the present system each railway is operated independently on the local time of some principal point or points on said road, but this plan was found to be highly objectionable, owing to the fact that some fifty standards, intersecting and interlacing each other, were in use throughout the country. By the plan which has been adopted this number will be reduced to four, the difference in time being one hour between each, viz, the 75th, 90th, 105th, and 120th degrees of longitude west from Greenwich. The adoption of these standards will not cause a difference of more than thirty minutes from the local time at any point which is now used as a standard. The new arrangement goes into effect November 18, 1883, and all changes of time are to occur at the termini of roads, or at the ends of divisions. The seventy-fifth meridian being almost precisely the central meridian for the system of roads now using standards based upon the time of the Eastern cities, and the ninetieth meridian being equally central for roads now running by the time of Western cities, the time of these meridians has been adopted for the territory which includes 90 per cent. of the whole railway system of the country. Nearly all of the larger cities have abolished local time and adopted that of the nearest standard meridian in use by the railways.[4][5][6]

GMT=the mean solar time at longitude 0° (the Prime Meridian)

International necessity

While the first person to propose a worldwide system of time zones was the Italian mathematician Quirico Filopanti, in his book Miranda! published in 1858, his idea was unknown outside the pages of his book until long after his death, so it did not influence the adoption of time zones during the 19th century. He proposed 24 hourly time zones, which he called "longitudinal days", the first centered on the meridian of Rome. He also proposed a universal time to be used in astronomy and telegraphy.[7][8]

Canadian Sir Sandford Fleming proposed a worldwide system of time zones in 1879. He advocated his system at several international conferences, thus is widely credited with their invention. In 1876, his first proposal was for a global 24-hour clock, conceptually located at the center of the Earth and not linked to any surface meridian. In 1879 he specified that his universal day would begin at the anti-meridian of Greenwich (180th meridian), while conceding that hourly time zones might have some limited local use. He also proposed his system at the International Meridian Conference in October 1884, but it did not adopt his time zones because they were not within its purview. The conference did adopt a universal day of 24 hours beginning at Greenwich midnight, but specified that it "shall not interfere with the use of local or standard time where desirable".

Nevertheless, most major countries had adopted hourly time zones by 1929. Today, all nations use standard time zones for secular purposes, but they do not all apply the concept as originally conceived. Newfoundland, India, Iran, Afghanistan, Venezuela, Burma, the Marquesas, as well as parts of Australia use half-hour deviations from standard time, and some nations, such as Nepal, and some provinces, such as the Chatham Islands, use quarter-hour deviations. Some countries, most notably China and India, use a single time zone, even though the extent of their territory far exceeds 15° of longitude. Before 1949 China used five time zones (see Time in China).

nautical

Since the 1920s a nautical standard time system has been in operation for ships on the high seas. Nautical time zones are an ideal form of the terrestrial time zone system. Under the system, a time change of one hour is required for each change of longitude by 15°. The 15° gore that is offset from GMT or UT1 (not UTC) by twelve hours is bisected by the nautical date line into two 7.5° gores that differ from GMT by ±12 hours. A nautical date line is implied but not explicitly drawn on time zone maps. It follows the 180th meridian except where it is interrupted by territorial waters adjacent to land, forming gaps: it is a pole-to-pole dashed line.[9][10][11]

A ship within the territorial waters of any nation would use that nation's standard time, but would revert to nautical standard time upon leaving its territorial waters. The captain was permitted to change the ship's clocks at a time of the captain’s choice following the ship's entry into another time zone. The captain often chooses midnight.

international date line -- What order do the days go (on main IDL article), how did this happen (history) -- include info on why itd line changed as examples of why timezones change

  • Because the earliest and latest time zones are 26 hours apart, any given calendar date exists at some point on the globe for 50 hours. For example, April 11 begins in time zone UTC+14 at 10:00 UTC April 10, and ends in time zone UTC−12 at 12:00 UTC April 12.

In theory, the increase proceeds eastward from the eastern boundary of the UTC time zone centered on 0°, increasing by one hour for each 15°, up to the International Date Line (longitude 180°).

A corresponding one hour decrease relative to UTC occurs every 15° heading westward from the western boundary of the UTC time zone, up to the International Date Line.

However, another problem prompted the creation of Universal Coordinated time, which is the standard for time zones and timekeeping today.

Standardization and Coordinated Universal Time

While time zones are based on Greenwich Mean Time (GMT), the definition of GMT was recently changed - it was previously the same as UT1, a mean solar time calculated directly from the rotation of the Earth. However, the rate of Earth's rotation is not constant. One contributing factor is the tidal acceleration, which is slowing down the Earth's rotation. This means that the length of a second is not constant when it is defined by the rotation of the earth, which justified the need for atomic time.

In January 1972, the length of the second in both GMT and atomic time was equalized. Before this happened, the time derived from atomic clocks was adjusted to closely match UT1. Afterwards, GMT was adjusted to match atomic time. Leap seconds are periodically inserted into Greenwich Mean Time to make it approximate to UT1. Because of the method of calculation this new time system is also called Coordinated Universal Time (UTC). In this way, local times continue to correspond approximately to mean solar time, while the effects of variations in Earth's rotation rate are confined to simple step changes that can be more easily applied to the uniform time scale (International Atomic Time or TAI). All local times differ from TAI by an integral number of seconds. With the implementation of UTC, nations began to use it in the definition of their time zones. As of 2005, most but not all nations had altered the definition of local time in this way.

In England, this involved redefining Greenwich Mean Time to make it the same as UTC.[12] British Summer Time (BST) is still one hour in advance of GMT and is therefore also one hour in advance of UTC. Thus GMT is the local time at the Royal Observatory, Greenwich between 0100 hours GMT on the last Sunday in October and 0100 hours GMT on the last Sunday in March. Similar circumstances apply in many other places.

Time zones usually differ from UTC by an integral number of hours,[13] although the laws of each jurisdiction would have to be consulted if sub-second accuracy was required. Several jurisdictions established time zones that differ by an integer number of half-hours or quarter-hours from UT1 or UTC.

Skewing of zones

Difference between sun time and clock time during daylight saving time:
0h ± 30m
1h ± 30m ahead
2h ± 30m ahead
3h ± 30m ahead

Ideal time zones, such as nautical time zones, are based on the mean solar time of a particular meridian located in the middle of that zone with boundaries located 7.5 degrees east and west of the meridian. In practice, zone boundaries are often drawn much farther to the west with often irregular boundaries, and some locations base their time on meridians located far to the east.

For example, even though the Prime Meridian (0°) passes through Spain and France, they use the mean solar time of 15 degrees east (Central European Time) rather than 0 degrees (Greenwich Mean Time). France previously used GMT, but was switched to CET (Central European Time) during the German occupation of the country during World War II and did not switch back after the war.[citation needed]

There is a tendency to draw time zone boundaries far to the west of their meridians. Many of these locations also use daylight saving time. As a result, in the summer, solar noon in the Spanish town of Muxia occurs on 14:37 (2:37pm) by the clock. This area of Spain never experiences sunset before 18:00 (6pm) local time even in midwinter, despite its lying more than 40 degrees north of the equator. Near the summer solstice, Muxia has sunset times similar to those of Stockholm, which is in the same time zone and 16 degrees further north.

A more extreme example is Nome, Alaska, which is at 165°24′W longitude—just west of center of the idealized Samoa Time Zone (165°W). Nevertheless, Nome observes Alaska Time (135°W) with DST so it is slightly more than two hours ahead of the sun in winter and over three in summer.[14]Kotzebue, Alaska, also near the same meridian but north of the Arctic Circle, has an annual event on 9 August to celebrate two sunsets in the same 24-hour day, one shortly after midnight at the start of the day, and the other shortly before midnight at the end of the day.

Also, China extends as far west as 73°34′E, but all parts of it use UTC+8 (120°E), so solar "noon" can occur as late as 15:00.

  • In terms of area, China is the largest country with only one time zone (UTC+08). China also has the widest spanning time zone. Before 1949, China was separated into five time zones.
  • Stations in Antarctica generally keep the time of their supply bases, thus both the Amundsen-Scott South Pole Station (U.S.) and McMurdo Station (U.S.) use New Zealand time (UTC+12 southern winter, UTC+13 southern summer).
  • The 27°N latitude passes back and forth across time zones in South Asia. Pakistan: +05, India +05:30, Nepal +05:45, India (Sikkim) +05:30, China +08:00, Bhutan +06:00, India (Arunachal Pradesh) +05:30, Myanmar +06:30. This switching was more odd in 2002, when Pakistan enabled daylight saving time. Thus from west to east, time zones were: +06:00, +05:30, +05:45, +05:30, +08:00, +06:00, +05:30 and +06:30.
  • There are numerous places where three or more time zones meet, for instance at the tri-country border of Finland, Norway and Russia.
  • The largest time gap along a political border is the 3.5 hour gap along the border of China (UTC+08) and Afghanistan (UTC+04:30).
  • One of the most unusual time zones is the Australian Central Western Time zone (CWST), which is a small strip of Western Australia from the border of South Australia west to 125.5°E, just before Caiguna. It is 8¾ hours ahead of UTC (UTC+08:45) and covers an area of about 35,000 km2, larger than Belgium, but has a population of about 200. Although unofficial, it is universally respected in the area—without it, the time gap in standard time at 129°E (the WA/SA border) would be 1.5 hours. See Time in Australia.

Notations and abbreviations

ISO 8601

There is an international standard for the representation of dates and times called ISO 8601. In this system, the UTC time zone system is denoted by the letter Z – a reference to the equivalent nautical time zone (GMT), which has been denoted by a Z since about 1950. "09:30 UTC" is therefore represented as "09:30Z" or "0930Z". "14:45:15 UTC" would be "14:45:15Z" or "144515Z". The letter also refers to the "zone description" of zero hours, which has been used since 1920. Since the NATO phonetic alphabet and amateur radio word for Z is "Zulu", UTC is sometimes known as Zulu time. This is especially true in aviation, where Zulu is the universal standard.[15] This ensures all pilots regardless of location are using the same 24-hour clock, thus avoiding confusion when flying between time zones.[16]

The military has different names for all of the UTC time zones based on the alphabet, in addition to the Z for Zulu which qualifies the Greenwich time zone.

UTC offset

Time zones are described as offsets from UTC. Local time in each time zone is UTC plus the current time zone offset for the location in question. The format is written ±[hh]:[mm], ±[hh][mm], or ±[hh]. So if the time being described is one hour ahead of UTC (such as the time in Berlin during the winter), the zone designator would be "+01:00", "+0100", or simply "+01". This is appended to the time in the same way that 'Z' was above. The offset from UTC changes with daylight saving time, e.g. a time offset in Chicago, which is in the North American Central Time Zone, would be "−06:00" for the winter (Central Standard Time) and "−05:00" for the summer (Central Daylight Time).

Abbreviations

Time zones are often represented by abbreviations such as "EST, WST, CST" but these are not part of the international time and date standard ISO 8601 and their use as sole designator for a time zone is not recommended. Such designations can be ambiguous. For example, "BST", which is British Summer Time, was re - named "British Standard Time" between 1968 and 1971 when Central European Time was in force because legislators objected to calling it Central European Time. The same legislation affirmed that the Standard Time within the United Kingdom was, and would continue to be, Greenwich Mean Time. Unlike Americans, Australians name their time zones according to the states using them.

Standard time zones

Standard time zones of the world as of March 2010

Standard time zones can be defined by geometrically subdividing the Earth's spheroid into 24 lunes (wedge-shaped sections), bordered by meridians each 15° of longitude apart. The local time in neighboring zones would differ by one hour. However, political boundaries, geographical practicalities, and convenience of inhabitants have resulted in irregularly shaped zones. Moreover, in a few regions, half-hour or quarter-hour differences are in effect.

Even though there are only 24 integral hour time zones, there are 40 time zones altogether. This is due to fractional hour offsets and zones with offsets larger than 12 hours near the International Date Line as well as one unofficial zone in Australia.

These examples give the local time at various locations around the world at 12:00 UTC when daylight saving time (or summer time, etc.) is not in effect:

Location(s)Time zoneTime
Baker Island, Howland Island (both uninhabited)UTC−1200:00
Samoa, American SamoaUTC−1101:00
Hawaii, PapeeteUTC−1002:00
Marquesas IslandsUTC−09:3002:30
Anchorage, Fairbanks, JuneauUTC−0903:00
Vancouver, Washington state, Portland, Las Vegas, California, Baja CaliforniaUTC−0804:00
Alberta, Colorado, Arizona, Chihuahua, SonoraUTC−0705:00
Manitoba, Illinois, Dallas, Houston, Mexico City, Guatemala, Honduras, El Salvador, Nicaragua, Costa RicaUTC−0606:00
Toronto, Montreal, Boston, New York, Georgia, Miami, Cuba, Jamaica, Haiti, Panama, Colombia, Continental Ecuador, PeruUTC−0507:00
VenezuelaUTC−04:3007:30
Nova Scotia, Dominican Republic, Puerto Rico, Trinidad and Tobago, Amazonas, Bolivia, Continental Chile, ParaguayUTC−0408:00
NewfoundlandUTC−03:3008:30
Rio de Janeiro, São Paulo, Argentina, Uruguay, NuukUTC−0309:00
Fernando de Noronha, South Georgia and the South Sandwich IslandsUTC−0210:00
Azores, Cape VerdeUTC−0111:00
Iceland, United Kingdom, Ireland, Continental Portugal, Morocco, Senegal, Ghana, Côte d'IvoireUTC12:00

Albania, Slovenia, Macedonia, Norway, Sweden, Denmark, Germany, the Netherlands, Belgium, Metropolitan France, Switzerland, Austria, Poland, Czech Republic, Slovakia, Hungary, European Spain, Italy, Croatia, Serbia, Tunisia, Algeria, Nigeria, Cameroon, Angola, Kinshasa

UTC+0113:00

Finland, Lithuania, Belarus, Ukraine, Romania, Bulgaria, Greece, Turkey, Syria, Lebanon, Jordan, Israel, Egypt, Libya, Mozambique, Malawi, Zambia, Zimbabwe, South Africa

UTC+0214:00
Moscow, Saint Petersburg, Samara, Iraq, Saudi Arabia, Yemen, Sudan, Ethiopia, Somalia, Kenya, Uganda, Tanzania, MadagascarUTC+0315:00
IranUTC+03:3015:30
Georgia, Armenia, Azerbaijan, United Arab Emirates, Oman, Seychelles, MauritiusUTC+0416:00
AfghanistanUTC+04:3016:30
Sverdlovsk, Uzbekistan, Pakistan, MaldivesUTC+0517:00
India, Sri LankaUTC+05:3017:30
NepalUTC+05:4517:45
Novosibirsk, Almaty, BangladeshUTC+0618:00
Myanmar, Cocos IslandsUTC+06:3018:30
Krasnoyarsk, Thailand, Vietnam, JakartaUTC+0719:00
Irkutsk, Ulan Bator, China, Taiwan, Hong Kong, Philippines, Malaysia, Singapore, PerthUTC+0820:00
Zabaykalsky, Japan, North Korea, South Korea, East TimorUTC+0921:00
Northern Territory, South AustraliaUTC+09:3021:30
Primorsky, Sydney, VictoriaUTC+1022:00
Lord Howe IslandUTC+10:3022:30
Kamchatka, Solomon Islands, New CaledoniaUTC+1123:00
Norfolk IslandUTC+11:3023:30
Fiji, New ZealandUTC+1200:00 (the following day)
Chatham IslandsUTC+12:4500:45 (the following day)
TongaUTC+1301:00 (the following day)
Line IslandsUTC+1402:00 (the following day)

Time zones by country

Daylight Saving Time

Time zones are adjusted seasonally into standard and daylight saving (or summer) variants. Daylight saving time zones (or summer time zones) include an offset (typically +1 hour) for daylight saving time.

There has been a general trend to set the boundaries of time zones west of their designated meridians in order to create a permanent daylight saving time effect.

  DST used
  DST no longer used
  DST never used

Many countries, and sometimes just certain regions of countries, adopt daylight saving time (also known as "Summer Time") during part of the year. This typically involves advancing clocks by an hour near the start of spring and adjusting back in autumn ("spring" forward, "fall" back). Some countries also use backward daylight saving over the winter period. Modern DST was first proposed in 1907 and was in widespread use in 1916 as a wartime measure aimed at conserving coal. Despite controversy, many countries have used it since then; details vary by location and change occasionally. Most countries around the equator do not observe daylight saving time, since the seasonal difference in sunlight is minimal.

Examples

International Date Line examples

Where the adjustment for time zones results in a time at the other side of midnight from UTC, then the date at the location is one day later or earlier.

Some examples when UTC is 23:00 on Monday when daylight saving time is not in effect:

Some examples when UTC is 02:00 on Tuesday when daylight saving time is not in effect:

  • Honolulu, Hawaii, United States: UTC−10; 16:00 on Monday
  • Toronto, Ontario, Canada: UTC−05; 21:00 on Monday

The time-zone adjustment for a specific location may vary because of daylight saving time. For example New Zealand, which is usually UTC+12, observes a one-hour daylight saving time adjustment during the Southern Hemisphere summer, resulting in a local time of UTC+13.

Time zone conversions

Conversion between time zones obeys the relationship

"time in zone A" − "UTC offset for zone A" = "time in zone B" − "UTC offset for zone B",

in which each side of the equation is equivalent to UTC. (The more familiar term "UTC offset" is used here rather than the term "zone designator" used by the standard.)

The conversion equation can be rearranged to

"time in zone B" = "time in zone A" − "UTC offset for zone A" + "UTC offset for zone B".

For example, what time is it in Los Angeles (UTC offset= −08) when the New York Stock Exchange opens at 09:30 (−05)?

time in Los Angeles = 09:30 − (−05:00) + (−08:00) = 06:30

In Delhi (UTC offset= +5:30), the New York Stock Exchange opens at

time in Delhi = 09:30 − (−05:00) + (+5:30) = 20:00

These calculations become more complicated near a daylight saving boundary (because the UTC offset for zone X is a function of the UTC time).

Internet and computer systems

tz database and how it affects computer systems and how the world affects it etc

See also

References

External links