Diamágnesesség

A diamágnesesség a mágnesesség egy formája, amely csak külső mágneses tér hatására jelentkezik. Ez általában egy gyenge hatás, de a szupravezetők erős hatást produkálnak.

Pirolitikus grafit lebegése

A diamágneses anyagok jellegzetes tulajdonsága, hogy bennük a spin- és a pályamomentum semlegesítik egymást, ezért normális állapotukban nincs kifelé irányuló mágneses momentumuk. Lenz törvénye értelmében csak külső tér hatására alakul ki egy azzal ellentétes irányú eredő mágneses mező. A diamágneses anyagok relatív permeabilitása 1-nél kisebb, de 1-hez nagyon közeli érték, a szuszceptibilitása pedig negatív. A diamágneses anyagok a mágneses fluxusvonalakat eltérítik az anyagtól, a szupravezetők teljesen kizárják, kivéve egy igen vékony réteget a felületen.

Története

1778-ban S. J. Bergman figyelte meg először, hogy a bizmut és az antimon taszítja a mágneses teret. Magát a “diamágnesesség” elnevezést Michael Faraday alkotta meg 1845-ben, amikor rájött, hogy a természetben minden anyag rendelkezik valamilyen formájában a diamágnesességgel egy külső mágneses tér hatására.

Diamágneses anyagok

Szupravezető, a tökéletes diamágnes

Ismertebb diamágneses anyagok[1]

Anyag
Bizmut-16,6
Szén (gyémánt)-2,1
Réz-1,0
Ólom-1,8
Ezüst-2,6
Higany-2,9
Víz-0,91
Szupravezető-


A diamágnesesség általános jelenség, mert az összes elektron, beleértve az atom elektronjait, mindig egy gyenge reakciót mutatnak. Azonban azon anyagoknál, amelyek a mágnesesség más formáit mutatják (ferromágnesesség, paramágnesesség) a diamágnesességet teljesen elnyomják. Azok az anyagok, amelyekre leginkább a diamágneses tulajdonságok jellemzőek, diamágneseknek hívjuk. Ezek közé tartoznak a nem-fizikusok által “nem mágneses” anyagoknak nevezett anyagok, mint például a víz, fa, a legtöbb szerves anyag, mint például a petróleum és néhány műanyag és több fém, mint a réz is, különösen a nehézfémek, amelyek sok elektronnal rendelkeznek (higany, arany, bizmut). Különböző molekuláris részek diamágnesességét Pascal-állandónak nevezik.

Diamágneses anyagok relatív mágneses permeabilitása kisebb mint 1, a mágneses szuszceptibilitása kisebb, mint 0, és ezért taszítják a mágneses mezőt. Mivel a diamágnesesség egy gyenge hatású jelenség, ezért a mindennapokban nem figyelhető meg. A fenti táblázatból látható, hogy a legerősebb diamágnesességet mutató anyag a bizmut. A mágneses szuszceptibilitásuk nagyságrendekkel kisebb, mint a para- vagy ferromágneseknek.

A szupravezető lényegében egy tökéletes diamágnes. Amikor egy mágneses mezőbe helyezik, kizárja a mezőt és a fluxusvonalak elkerülik ezt a régiót. (Meissner-Ochsenfeld-effektus) A szupravezető szuszceptibilitása .Ez a hatás nem az örvényáramoknak tudható be, mint ahogy az közönséges diamágneses anyagoknál érvényes.

Továbbá minden vezető effektív diamágneses hatást mutat, amikor változó mágneses térbe kerül. A Lorentz-erő hat az elektronokra, ami előidézi az elektronok körforgását, kialakítva az örvényáramot. Az örvényáramok aztán mágneses teret produkálnak, amely ellentétes az alkalmazott térrel, ellenállva a vezető mozgásával.

Diamágnesesség demonstrálása

Vízfelszín meggörbítése

Ha egy erős mágnest (például szupramágnes) egy vízréteg takar el (a mágnes átmérőjéhez képest vékony rétegben), akkor a mágnes tere meggörbíti a vizet. Ez egy kis gödröcskét képez a víz felszínén.[2][3]

Diamágneses levitáció

Élő béka lebegése

A képen egy élő béka levitál (lebeg) egy 32 mm átmérőjű Bitter szolenoid függőleges furatában 16 tesla erősségű mágneses térben, a Nijmegen High Field Magnet Laboratory-ban. Diamágneses mágneses térben létrejöhet a lebegés egyensúlyi állapotban, energiafelhasználás nélkül.

Az Earnshaw-elmélet szerint úgy tűnik, hogy a statikus mágneses levitáció kizárt. Azonban az Earnshaw-elmélet csak azokra az objektumokra vonatkozik, amelyeknek pozitív momentumuk van, mint például a ferromágneseknek (amelyeknek permanens pozitív momentumuk van) és a paramágneseknek (amelyek pozitív momentumot indukálnak). A diamágnesek negatív momentumot indukálnak. Egy vékony rétegű pirolitikus grafit, amely rendszerint erősen diamágneses anyag, stabilan lebeghet mágneses térben, amely származhat permanens ritkaföldfém mágnesektől.

Ezek mind bemutathatóak szobahőmérsékleten, mint a diamágnesesség demonstrációja. 2009 szeptemberében a NASA Jet Propulsion Laboratory (Pasadena, Kalifornia) bejelentette, hogy sikerült egy egeret lebegtetniük egy szupravezető-mágnes segítségével.[4] Ez nagy előrelépés volt, hiszen egy egér jóval közelebb áll az emberhez, mint egy béka)[5] A kutatók abban reménykednek, hogy hasonló kísérleteket képesek produkálni csontokon és izmokon mikrogravitációs környezetben.

A jelenleg folyó kísérletekben proteinkristályok növekedését vizsgálják erős mágneses térben, amely a Föld gravitációját ellensúlyozza.[6]

Otthon is elvégezhető kísérlet: néhány permanens mágnessel lebegtetni lehet bizmut lemezeket.[7]

A diamágnesesség elmélete

A Bohr–van Leeuwen-elmélet szerint egy tisztán klasszikus rendszerben nem létezhet sem diamágnesesség, sem paramágnesesség. Mégis a diamágnesességre Langevin klasszikus elmélete hasonló előrejelzést ad, mint a kvantumelmélet.[8]

Langevin-féle diamágnesesség

A diamágnesesség Langevin elméleténél az anyag atomjai zárt héjban vannak (lásd dielektrium). A Larmor-precesszió szerinti frekvencia . A fordulatszám , így az áram Z elektronnal rendelkező atomnál: (SI-egységben) .[8]

ahol egy e töltésű és m tömegű elektronra ható térerősség: B

Egy áramhurok mágneses momentuma egyenlő az áram és a hurok területének szorzatával. Tegyük fel, hogy a tér a Z-tengelyen van. Az átlagos hurokterület megadható, ahol az elektronok távolságának átlagos középértéke merőleges a z-tengelyre. A mágneses momentum ekkor:

Ha a töltéseloszlás gömb mentén szimmetrikus, akkor feltételezhetjük, hogy az x, y, z koordináták eloszlása független, és azonosan oszlanak el. Ekkor , ahol a mag elektronjai távolságának négyzetes középértéke. Ilymódon . Ha N az atomok száma egységenként, a diamágneses szuszceptibilitás:

Diamágnesesség fémekben

A Langevin-elmélet nem vonatkozik a fémekre, mert a fémeknek nincsenek lokalizált elektronjaik. A szabad elektronú gázokra vonatkozó diamágnesesség-elméletet Landau-diamágnesességnek hívják.

Jegyzetek

Fordítás

Ez a szócikk részben vagy egészben a diamagnetism című az Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

Külső hivatkozások