Osztóösszeg-függvény

matematikai fogalom
(Osztóhatványösszeg-függvény szócikkből átirányítva)

A számelméletben általában σ(n)-nel jelölt osztóösszeg-függvény avagy szigmafüggvény[1] a természetes számok halmazán értelmezett számelméleti függvény, melynek értéke az argumentum osztóinak összege (az 1-et és magát a független változóként vett számot is beleértve). Képlete tehát

A szigmafüggvény grafikonja (pontdiagramja n=250-ig, kék színnel), nagyságrendi referenciaként feltüntetve az y=n+1 (lila), az y=2n (sárga) és az y=3n (világoskék) egyeneseket is.
.[2]

Például σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28; különleges (elfajult) esetekként σ(0) = 0; σ(1) = 1.[3] További példákat lásd lentebb.

Az osztóösszeg-, latinul summis divisorum-függvény, ∫ n-nel jelölve, már Leonhard Euler egy 175060-as évek-as években írt dolgozatában is szerepelt, a rá vonatkozó kanonikus képlettel együtt.[4]

Értékei kis számokra

n1234567891011121314151617181920
σ(n)1347612815131812281424243118392042
n2122232425262728293031323334353637383940
σ(n)3236246031424056307232634854489138605690
n4142434445464748495051525354555657585960
σ(n)42964484787248124579372985412072120809060168
n6162636465666768697071727374757677787980
σ(n)629610412784144681269614472195741141241409616880186
n81828384858687888990919293949596979899100
σ(n)121126842241081321201809023411216812814412025298171156217

Tulajdonságok

Algebrai-számelméleti tulajdonságok

Értékei prímhatványokra

Ha α>0 természetes szám és pN prímszám, akkor

.

Ennek speciális eseteként

.

A második egyenlőség a prímszám definíciójának is egyszerű következménye, hiszen egy p prímnek pontosan két osztója van: 1 és p, ezek összege p+1. Az első egyenlőség a számelmélet alaptételéből következik, ugyanis pα osztói pontosan a pβ alakú számok, ahol 0≤βα és βN; tehát az osztók rendre 1, p, p2, …, pα, egy α+1 tagú, 1 kezdőelemű és p hányadosú mértani sorozat elemei, melynek összegképlete pont a fent írt egyenlőséget adja.

Kanonikus kiszámítási mód

A multiplikativitást és az előző tulajdonságot felhasználva, az argumentum kanonikus alakja ismeretében a szigmafüggvényt kiszámító képlet adható. Eszerint ha az n>1 természetes szám prímtényezőkre bontása (kanonikus alakja)

(α1, …, αg, gN+ és p1, …, pg prímszámok);

akkor érvényes:

.

Multiplikativitás

(Gyengén) multiplikatív, azaz relatív prím számok szorzatán felvett értéke a számokon felvett értékek szorzata. Formálisan:

Például:

  • a=4, és σ(4) = 7;
  • b=15, és σ(15) = 24;

(lásd az Értékei kis számokra c. táblázatot)

A két szám szorzata: 4·15 = 60, valamint σ(60) = 1+2+3+4+5+6+10+12+15+20+30+60 = 168, ami pontosan 7·24.

Ez a tulajdonság a számelmélet alaptételének egyszerű következménye. Jelölje Σ, ahogy szokásos, egy számhalmaz vagy elemrendszer elemeinek összegét. Ekkor:

  1. Ha a vagy b nulla, akkor szorzatuk is nulla, a függvény szorzatukon felvett értéke is nulla; ugyanakkor a függvény legalább egyikükön (a nulla értékűn) felvett értéke is nulla, így ez esetben az állítás igaz. Feltehető, hogy a,b>0.
  2. Jelölje A az a osztóinak halmazát, B a b osztóinak halmazát; C az ab osztóinak halmazát; ekkor a számelmélet alaptételének egyik következménye szerint relatív prím számok szorzatának osztói a tényezők osztóinak szorzatai; a szorzás disztributivitása alapján pedig ekkor Σ(A)Σ(B) = (a1+…+aj)(b1+…+bk) = a1Σ(B)+…+ajΣ(B) = {a1y | yB}+…+{ajy | yB} = Σ{xy|xA, yB} = ΣC = σ(ab).

A szigmafüggvény által felvett értékek osztályzása

σ(n) akkor és csak akkor 2-hatvány, ha n=1, vagy n különböző Mersenne-prímek szorzata (Sierpiński 195859, Sivaramakrishnan 1989, Kaplansky 1999). A függvény értéke akkor és csak akkor páratlan, ha n négyzetszám vagy négyzetszám kétszerese. Subarao egy 1974-es eredménye szerint

(n) ≡ 2 (mod φ(n))

akkor és csak akkor, ha n prím, vagy ha 4, 6, vagy 22.

Analitikus tulajdonságok

A szigmafüggvény növekedése szabálytalan (nem monoton, nem csak az argumentum nagyságától függ, hanem annak multiplikatív szerkezetével (prímfelbontás) is erős kapcsolatban áll).

Alulról korlátos

A szigmafüggvény triviálisan alulról korlátos és alsó határa 0, hiszen értéke bármely nemnegatív argumentumra nemnegatív, és a 0-t az n = 0 esetben fel is veszi. Vagyis

min(R(σ(n))) = 0.

(A fentiek következményeképp inf(R(σ(n))) = 0.)

Felülről nem korlátos

A függvény felülről nem korlátos, hiszen minden n természetes számra teljesül nσ(n) (lásd a következő bekezdést). Ha most K akármilyen valós szám és N tetszőleges, nála nagyobb természetes szám (ilyen az arkhimédeszi axióma alapján létezik), akkor K < Nσ(N), így σ nem felülről korlátos.

Az argumentumnál nagyobb

Egyszerű tulajdonság, hogy σ(n)≥n+1, amennyiben n≥2. Ugyanis maga n és 1 mindig két különböző osztója n-nek, ha n≥2, és így, ha A-val jelöljük az ezektől különböző osztók összegét (A≥0), akkor n>2-re σ(n)=1+A+nn+1. Szemléletesen ez azt jelenti, hogy a függvénygrafikon az nn+1 „diszkrét egyenes fölötti síkrészbe esik”. Megjegyezzük, hogy ha n<2, akkor σ(n)=n, vagyis minden természetes számra csak a fenti állításnál „kevesebbet mondó” nσ(n) egyenlőtlenség igaz.

Grönwall tétele

A szigmafüggvény növekedését nagy vonalakban a következő határértékkel jellemezhetjük:

.

ahol az Euler–Mascheroni-állandó. Ezt a tételt Thomas Hakon Grönwall tette közzé 1913-ban.[5] Srínivásza Rámánudzsan tőle függetlenül egy hasonló, de gyengébb eredményt fedezett fel.

Értékei összege és átlaga

és itt helyett már nem írhatunk -et.[6]

Erdős, Bateman, Pomerance és Straus 1980-ban publikált eredményei szerint az n szám osztói átlagának, vagyis az

függvény folytonos összegére érvényesek a következő aszimptotikus egyenlőségek:

,

ahol c egy, a cikkben meghatározott konstans; míg

,

ahol λ szintén egy, a szerzők által megadott állandó.[7]

A szigmafüggvény és a Riemann-zétafüggvény

Több tételt (Robin tétele, Lagarias tétele) sikerült bizonyítani a szigmafüggvény növekedésének és a Riemann-sejtés érvényességének kapcsolatáról, ezeket ld. ott.

Számok számelméleti osztályzása a szigmafüggvény értékei alapján

Tökéletes és barátságos számok

Rengetegféle számosztályt vizsgáltak, közülük sokat komolyabb eredmények nélkül, melyek megkülönböztetése elemeiknek a szigmafüggvény által felvett értékei különbségén vagy azonosságán alapul.

Tökéletes számok például azok, melyeken a szigmafüggvény értékként pontosan a szám kétszeresét veszi fel (n tökéletes, ha σ(n)=2n). Azokat a számokat, ahol az osztóösszeg kisebb a szám kétszeresénél, hiányos számoknak nevezzük, amelyeknél pedig nagyobb, azokat bővelkedő számoknak.

Azokat a számpárokat, amelyekre igaz, hogy az egyik szám osztóinak összege a másik számmal egyenlő (és fordítva) barátságos számoknak hívjuk. Ezek az elnevezések (tökéletes szám, barátságos számok) mind az ókori görögöktől származnak, akik az ilyen számoknak különleges jelentőséget tulajdonítottak.

Még tökéletesebb és nem-annyira-tökéletes számok

Majdnem tökéletes számoknak nevezzük azon hiányos számokat, amelyek osztóösszege csak 1-gyel marad el kétszeresüktől (azaz: valódi osztóik összege eggyel kevesebb náluknál maguknál). Egyszerű számolás (ld. a prímhatványok osztóösszegére vonatkozó képletet) mutatja, hogy minden kettőhatvány majdnem tökéletes, de nem tudjuk, rajtuk kívül vannak-e majdnem tökéletes számok.

Kvázitökéletes számok azok a bővelkedő számok, melyek osztóösszege 1-gyel több, mint kétszeresük, azaz valódi osztóik összege 1-gyel több, mint önmaguk. Nyitott probléma, hogy létezik-e akár egyetlen kvázitökéletes szám is, azt tudjuk, hogy 1035 alatt nem található ilyen.

Többszörösen tökéletes számok: m-szeresen tökéletes (vagy m-szeresen multiperfekt számok) számok azon n-ek, melyekre σ(n)=mn. A tökéletes számok kétszeresen tökéletesek. Léteznek háromszor tökéletes számok is, mint például 120. Léteznek négyszeresen, ötszörösen, hatszorosan és hétszeresen tökéletes számok is. A legnagyobb ismert multiperfekt szám kb. 1346-jegyű.[8]

Általánosítások

Leggyakrabban előforduló általánosítása az osztóhatványösszeg-függvény, mely a független változó osztói r-edik hatványainak összege (r valós szám):

A függvény σm(n) jelű m-edik iteráltját is vizsgálták:[9]

σm(n) = σ(σ(…(σ(n))…))
(m-szer)

Lehetséges más konkrét algebrai struktúrákban, például kommutatív grupoidokban, félcsoportokban vagy – a legérdekesebb esetként – gyűrűkben is rákérdezni egy adott (x) elemet „osztó” más (y) elemek (az x=dy egyenlet megoldásai, ahol y és d ismeretlenek) összegére. Akadt már egy 1961-es kísérlet a függvény bevezetésére például a Gauss-egészek körében[10] a következő módon: legyen olyan Gauss-prímfelbontása a z Gauss-egésznek, ahol ε egység, pi pedig mind az I. síknegyedbe eső prímek (tehát képzetes és valós részük egész együtthatói is nemnegatívak). A z=1 esetében félkanonikus felbontásról van szó, ahol az összes Gauss-egészekbeli prím szerepel, de 0 kitevővel. Ez esetben

.

A definíció 1-re a σ(1) = 1 értéket adja. Ez azért is jó általánosítás, mivel megőrzi a multiplikativitást.[11]

Kapcsolódó szócikkek

Jegyzetek

Irodalom

  • Gyarmati Edit – Turán Pál: Számelmélet. Egyetemi jegyzet. Nemzeti tankönyvkiadó, Bp., 1997.
  • Mathworld: Divisor function

További információk